ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • Cell Press
  • Institute of Physics
  • 2005-2009  (2)
  • 1980-1984
  • 1930-1934
  • 1
    facet.materialart.
    Unknown
    Institute of Physics
    In:  Journal of Physics - Condensed Matter, 18 (38). S2919-S2934.
    Publication Date: 2020-07-20
    Description: Loss processes in magnetic nanoparticles are discussed with respect to optimization of the specific loss power (SLP) for application in tumour hyperthermia. Several types of magnetic iron oxide nanoparticles representative for different preparation methods (wet chemical precipitation, grinding, bacterial synthesis, magnetic size fractionation) are the subject of a comparative study of structural and magnetic properties. Since the specific loss power useful for hyperthermia is restricted by serious limitations of the alternating field amplitude and frequency, the effects of the latter are investigated experimentally in detail. The dependence of the SLP on the mean particle size is studied over a broad size range from superparamagnetic up to multidomain particles, and guidelines for achieving large SLP under the constraints valid for the field parameters are derived. Particles with the mean size of 18 nm having a narrow size distribution proved particularly useful. In particular, very high heating power may be delivered by bacterial magnetosomes, the best sample of which showed nearly 1 kW g−1 at 410 kHz and 10 kA m−1. This value may even be exceeded by metallic magnetic particles, as indicated by measurements on cobalt particles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Cell Press
    In:  Trends in Microbiology, 14 (8). pp. 331-336.
    Publication Date: 2019-09-23
    Description: Marine microbes have evolved to live along extreme environmental gradients, whether at the microscale, in proximity to particles or over the entire water column. Using community genomics, DeLong et al. highlight deduced biological differences that result from open-ocean depth gradients. The power of the large-insert libraries used is that both phylogeny and function can be inferred from the genetic material obtained - even for uncultured microbes. Together with complete genomes of marine isolates and advances in physiology and ecology, this study paves the way for ecosystems biology approaches to dynamics and controls of marine microbial populations. © 2006 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...