ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations  (4)
  • Blackwell Publishing Ltd  (1)
  • Blackwell publishing  (1)
  • Elsevier.  (1)
  • Geophysical Journal International  (1)
  • American Institute of Physics
  • Annual Reviews
  • 2005-2009  (4)
  • 1980-1984
  • 1965-1969
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: We have developed a Bayesian method for the inversion of static ground deformations at volcanic areas.
    Description: Published
    Description: 935-946
    Description: partially_open
    Keywords: Bayesian inversion ; deformation ; Geodesy ; magma ; Mt Etna ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 473 bytes
    Format: 827257 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The tectonic deformation of the Lipari-Vulcano complex, one of the most important active volcanic areas of Mediterranean region, is studied here through the analysis of ten years (1996-2006) of GPS data from both 3 permanent and 13 non-permanent stations. This area can be considered crucial for the understanding of the Eurasia-Africa plates interaction in the Mediterranean area, and, in general, this work emphasize a methodological approach, already applied in other areas worldwide (e.g. Shen et al., 1996, El-Fiki and Kato, 1999) where geodetic data and strain parameters maps of critical areas can help to improve our understanding of their geodynamical aspects. In this framework, this study is aimed at providing a kinematic deformation model on the basis of the dense geodetically estimated velocities of the Lipari-Vulcano complex. In particular, the observed deformation pattern can be described by a mix between 1) the main N-S regional compression and 2) a NNE-SSW compression with a small right-lateral strike slip component acting along a tectonic structure N°40W trending located between the two islands. This pattern was inspected through a simplified synthetic model.
    Description: This research has benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: 370–377
    Description: 1.9. TTC - Rete GPS nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: GPS ; Aeolian Islands ; strain ; modelling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-03
    Description: We present a new geodetic velocity solution for Italy and surroundings areas, obtained from the analysis of continuous and survey mode Global Positioning System observations collected between 1991 and 2002.
    Description: Published
    Description: 861-880
    Description: 1.9. TTC - Rete GPS nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Central Mediterranean, crustal deformations, GPS, plate boundary, plate tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: A very large uplift (about 1.8 m) occurred in the period 1982–1984 at Campi Flegrei caldera, Italy, without culminating in an eruption. A still-standing controversy accompanies the interpretation of deformation and gravity changes recorded during the unrest, which were interpreted to result from the sub-surface magmatic reservoir by some authors and from the hydrothermal system or hybrid sources by others. Here for the first time we take into account crustal layering while inverting leveling, EDM, and gravity data using uniformlypressurized sources, namely small vertical spheroids and finite horizontal penny-shaped sources. The weight of EDM data in the misfit function is chosen from a trade-off curve in order to balance the compromise between fitting the leveling and the EDM data well. Models using a homogeneous medium cannot give a good simultaneous fit to leveling and EDM deformation data of the 1982–1984 unrest, whereas incorporating a layered structure (determined from seismically derived estimates of the P wave speed for the crust, and not adjusted to improve the fit in any of the inversions) allows a significantly better fit. Also, layering affects the sub-surface mass redistribution effects on gravity changes, and we show that the retrieved intrusion density is in full agreement with densities for highly evolved magmas expected at the Campi Flegrei caldera for depths of 3 to 4 km, ruling out hydrothermal fluids as the primary cause of the 1982–1984 unrest. The source of the 1982–1984 CF unrest was probably a shallow (about 3-km deep) penny-shaped magma intrusion fed by a deeper magma chamber; source overpressure was few MPa.
    Description: Published
    Description: 181-188
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic hazard ; caldera unrest ; gravity ; deformation ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...