ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (406)
  • Protein Conformation  (406)
  • American Association for the Advancement of Science (AAAS)  (406)
  • American Chemical Society
  • Oxford University Press
  • Periodicals Archive Online (PAO)
  • 2005-2009  (270)
  • 1985-1989  (136)
  • 1945-1949
  • Chemistry and Pharmacology  (406)
  • Biology  (406)
  • Political Science
  • Economics
  • Geosciences
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
  • Process Engineering, Biotechnology, Nutrition Technology
Collection
  • Journals
  • Articles  (406)
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (406)
  • American Chemical Society
  • Oxford University Press
  • Periodicals Archive Online (PAO)
  • Nature Publishing Group (NPG)  (50)
Years
Year
Topic
  • 1
    Publication Date: 2009-12-19
    Description: We report here crystallization at long range in networks of like-charge supramolecular peptide filaments mediated by repulsive forces. The crystallization is spontaneous beyond a given concentration of the molecules that form the filaments but can be triggered by x-rays at lower concentrations. The crystalline domains formed by x-ray irradiation, with interfilament separations of up to 320 angstroms, can be stable for hours after the beam is turned off, and ions that screen charges on the filaments suppress ordering. We hypothesize that the stability of crystalline domains emerges from a balance of repulsive tensions linked to native or x-ray-induced charges and the mechanical compressive entrapment of filaments within a network. Similar phenomena may occur naturally in the cytoskeleton of cells and, if induced externally in biological or artificial systems, lead to possible biomedical and lithographic functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086396/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086396/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cui, Honggang -- Pashuck, E Thomas -- Velichko, Yuri S -- Weigand, Steven J -- Cheetham, Andrew G -- Newcomb, Christina J -- Stupp, Samuel I -- 5R01 DE015920/DE/NIDCR NIH HHS/ -- R01 DE015920/DE/NIDCR NIH HHS/ -- R01 DE015920-05/DE/NIDCR NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 29;327(5965):555-9. doi: 10.1126/science.1182340. Epub 2009 Dec 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20019248" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Crystallization ; *Nanostructures/ultrastructure ; Oxygen ; Peptides/*chemistry/*radiation effects ; Physicochemical Phenomena ; Protein Conformation ; Scattering, Small Angle ; Static Electricity ; Temperature ; X-Ray Diffraction ; X-Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-12-08
    Description: Previous x-ray crystal structures have given insight into the mechanism of transcription and the role of general transcription factors in the initiation of the process. A structure of an RNA polymerase II-general transcription factor TFIIB complex at 4.5 angstrom resolution revealed the amino-terminal region of TFIIB, including a loop termed the "B finger," reaching into the active center of the polymerase where it may interact with both DNA and RNA, but this structure showed little of the carboxyl-terminal region. A new crystal structure of the same complex at 3.8 angstrom resolution obtained under different solution conditions is complementary with the previous one, revealing the carboxyl-terminal region of TFIIB, located above the polymerase active center cleft, but showing none of the B finger. In the new structure, the linker between the amino- and carboxyl-terminal regions can also be seen, snaking down from above the cleft toward the active center. The two structures, taken together with others previously obtained, dispel long-standing mysteries of the transcription initiation process.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813267/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813267/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Xin -- Bushnell, David A -- Wang, Dong -- Calero, Guillermo -- Kornberg, Roger D -- AI21144/AI/NIAID NIH HHS/ -- GM049985/GM/NIGMS NIH HHS/ -- K99 GM085136/GM/NIGMS NIH HHS/ -- K99 GM085136-02/GM/NIGMS NIH HHS/ -- R00 GM085136/GM/NIGMS NIH HHS/ -- R01 AI021144/AI/NIAID NIH HHS/ -- R01 AI021144-25/AI/NIAID NIH HHS/ -- R01 GM036659/GM/NIGMS NIH HHS/ -- R01 GM049985/GM/NIGMS NIH HHS/ -- R01 GM049985-16/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 8;327(5962):206-9. doi: 10.1126/science.1182015. Epub 2009 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965383" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA Polymerase II/*chemistry/*metabolism ; Repetitive Sequences, Amino Acid ; Saccharomyces cerevisiae/chemistry/genetics/metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism ; Transcription Factor TFIIB/*chemistry/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-12-08
    Description: Tetrathiomolybdate (TM) is an orally active agent for treatment of disorders of copper metabolism. Here we describe how TM inhibits proteins that regulate copper physiology. Crystallographic results reveal that the surprising stability of the drug complex with the metallochaperone Atx1 arises from formation of a sulfur-bridged copper-molybdenum cluster reminiscent of those found in molybdenum and iron sulfur proteins. Spectroscopic studies indicate that this cluster is stable in solution and corresponds to physiological clusters isolated from TM-treated Wilson's disease animal models. Finally, mechanistic studies show that the drug-metallochaperone inhibits metal transfer functions between copper-trafficking proteins. The results are consistent with a model wherein TM can directly and reversibly down-regulate copper delivery to secreted metalloenzymes and suggest that proteins involved in metal regulation might be fruitful drug targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658115/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658115/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alvarez, Hamsell M -- Xue, Yi -- Robinson, Chandler D -- Canalizo-Hernandez, Monica A -- Marvin, Rebecca G -- Kelly, Rebekah A -- Mondragon, Alfonso -- Penner-Hahn, James E -- O'Halloran, Thomas V -- GM38047/GM/NIGMS NIH HHS/ -- GM38784/GM/NIGMS NIH HHS/ -- GM54222/GM/NIGMS NIH HHS/ -- R01 GM038047/GM/NIGMS NIH HHS/ -- R01 GM038784/GM/NIGMS NIH HHS/ -- R01 GM054111/GM/NIGMS NIH HHS/ -- R37 GM038784/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 15;327(5963):331-4. doi: 10.1126/science.1179907. Epub 2009 Nov 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965379" target="_blank"〉PubMed〈/a〉
    Keywords: Carrier Proteins/*antagonists & inhibitors/chemistry/*metabolism ; Cation Transport Proteins/metabolism ; Copper/chemistry/*metabolism ; Crystallography, X-Ray ; Ligands ; Metallochaperones/*antagonists & inhibitors/chemistry/*metabolism ; Models, Chemical ; Models, Molecular ; Molecular Structure ; Molybdenum/chemistry/*metabolism/*pharmacology ; Oxidation-Reduction ; Physicochemical Processes ; Protein Conformation ; Saccharomyces cerevisiae Proteins/*antagonists & inhibitors/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-12-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1337-9. doi: 10.1126/science.326.5958.1337.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965731" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid beta-Peptides/chemistry/metabolism ; Animals ; Humans ; Nerve Tissue Proteins/chemistry/metabolism ; Neurodegenerative Diseases/*etiology/metabolism/therapy ; Neurons/chemistry/metabolism ; Nuclear Proteins/chemistry/metabolism ; *Prion Diseases ; Prions/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Proteins/*chemistry/metabolism ; alpha-Synuclein/chemistry/metabolism ; tau Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-12-08
    Description: The site on HIV-1 gp120 that binds to the CD4 receptor is vulnerable to antibodies. However, most antibodies that interact with this site cannot neutralize HIV-1. To understand the basis of this resistance, we determined co-crystal structures for two poorly neutralizing, CD4-binding site (CD4BS) antibodies, F105 and b13, in complexes with gp120. Both antibodies exhibited approach angles to gp120 similar to those of CD4 and a rare, broadly neutralizing CD4BS antibody, b12. Slight differences in recognition, however, resulted in substantial differences in F105- and b13-bound conformations relative to b12-bound gp120. Modeling and binding experiments revealed these conformations to be poorly compatible with the viral spike. This incompatibility, the consequence of slight differences in CD4BS recognition, renders HIV-1 resistant to all but the most accurately targeted antibodies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862588/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862588/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Lei -- Kwon, Young Do -- Zhou, Tongqing -- Wu, Xueling -- O'Dell, Sijy -- Cavacini, Lisa -- Hessell, Ann J -- Pancera, Marie -- Tang, Min -- Xu, Ling -- Yang, Zhi-Yong -- Zhang, Mei-Yun -- Arthos, James -- Burton, Dennis R -- Dimitrov, Dimiter S -- Nabel, Gary J -- Posner, Marshall R -- Sodroski, Joseph -- Wyatt, Richard -- Mascola, John R -- Kwong, Peter D -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 20;326(5956):1123-7. doi: 10.1126/science.1175868.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965434" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/*immunology/metabolism ; Antigens, CD4/chemistry/*metabolism ; Binding Sites ; Binding Sites, Antibody ; Crystallography, X-Ray ; Epitopes ; HIV Antibodies/*chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/*chemistry/*immunology/metabolism ; Hiv-1 ; Humans ; Hydrophobic and Hydrophilic Interactions ; *Immune Evasion ; Models, Molecular ; Molecular Sequence Data ; Peptide Fragments/chemistry/immunology/metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-12-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1338. doi: 10.1126/science.326.5958.1338.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965732" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Adhesion ; Endocrine Cells/chemistry/metabolism ; Humans ; Melanins/biosynthesis ; Nervous System Physiological Phenomena ; Prions/*chemistry ; Protein Conformation ; *Protein Folding ; Proteins/*chemistry/physiology ; Secretory Vesicles/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-12-08
    Description: Nuclear export of microRNAs (miRNAs) by exportin-5 (Exp-5) is an essential step in miRNA biogenesis. Here, we present the 2.9 angstrom structure of the pre-miRNA nuclear export machinery formed by pre-miRNA complexed with Exp-5 and a guanine triphosphate (GTP)-bound form of the small nuclear guanine triphosphatase (GTPase) Ran (RanGTP). The x-ray structure shows that Exp-5:RanGTP recognizes the 2-nucleotide 3' overhang structure and the double-stranded stem of the pre-miRNA. Exp-5:RanGTP shields the pre-miRNA stem from degradation in a baseball mitt-like structure where it is held by broadly distributed weak interactions, whereas a tunnel-like structure of Exp-5 interacts strongly with the 2-nucleotide 3' overhang through hydrogen bonds and ionic interactions. RNA recognition by Exp-5:RanGTP does not depend on RNA sequence, implying that Exp-5:RanGTP can recognize a variety of pre-miRNAs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okada, Chimari -- Yamashita, Eiki -- Lee, Soo Jae -- Shibata, Satoshi -- Katahira, Jun -- Nakagawa, Atsushi -- Yoneda, Yoshihiro -- Tsukihara, Tomitake -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1275-9. doi: 10.1126/science.1178705.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965479" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Dogs ; Humans ; Hydrogen Bonding ; Karyopherins/*chemistry/metabolism ; MicroRNAs/*chemistry/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; Physicochemical Processes ; Protein Conformation ; ran GTP-Binding Protein/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-11-26
    Description: Expression of the Escherichia coli tryptophanase operon depends on ribosome stalling during translation of the upstream TnaC leader peptide, a process for which interactions between the TnaC nascent chain and the ribosomal exit tunnel are critical. We determined a 5.8 angstrom-resolution cryo-electron microscopy and single-particle reconstruction of a ribosome stalled during translation of the tnaC leader gene. The nascent chain was extended within the exit tunnel, making contacts with ribosomal components at distinct sites. Upon stalling, two conserved residues within the peptidyltransferase center adopted conformations that preclude binding of release factors. We propose a model whereby interactions within the tunnel are relayed to the peptidyltransferase center to inhibit translation. Moreover, we show that nascent chains adopt distinct conformations within the ribosomal exit tunnel.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920484/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920484/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seidelt, Birgit -- Innis, C Axel -- Wilson, Daniel N -- Gartmann, Marco -- Armache, Jean-Paul -- Villa, Elizabeth -- Trabuco, Leonardo G -- Becker, Thomas -- Mielke, Thorsten -- Schulten, Klaus -- Steitz, Thomas A -- Beckmann, Roland -- GM022778/GM/NIGMS NIH HHS/ -- P41 RR005969/RR/NCRR NIH HHS/ -- P41 RR005969-19/RR/NCRR NIH HHS/ -- P41-RR05969/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1412-5. doi: 10.1126/science.1177662. Epub 2009 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Center and Center for Integrated Protein Science Munich (CIPSM), Department for Chemistry and Biochemistry, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19933110" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cryoelectron Microscopy ; Escherichia coli/*genetics/metabolism ; Escherichia coli Proteins/*chemistry/genetics/*metabolism/ultrastructure ; Gene Expression Regulation, Bacterial ; Image Processing, Computer-Assisted ; Models, Biological ; Models, Molecular ; Operon ; Peptidyl Transferases/metabolism ; *Protein Biosynthesis ; Protein Conformation ; RNA-Binding Proteins/chemistry/metabolism/ultrastructure ; Ribosomal Proteins/chemistry/metabolism/ultrastructure ; Ribosomes/*metabolism/ultrastructure ; Tryptophanase/biosynthesis/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-11-26
    Description: The trimeric Sec61/SecY complex is a protein-conducting channel (PCC) for secretory and membrane proteins. Although Sec complexes can form oligomers, it has been suggested that a single copy may serve as an active PCC. We determined subnanometer-resolution cryo-electron microscopy structures of eukaryotic ribosome-Sec61 complexes. In combination with biochemical data, we found that in both idle and active states, the Sec complex is not oligomeric and interacts mainly via two cytoplasmic loops with the universal ribosomal adaptor site. In the active state, the ribosomal tunnel and a central pore of the monomeric PCC were occupied by the nascent chain, contacting loop 6 of the Sec complex. This provides a structural basis for the activity of a solitary Sec complex in cotranslational protein translocation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920595/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920595/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becker, Thomas -- Bhushan, Shashi -- Jarasch, Alexander -- Armache, Jean-Paul -- Funes, Soledad -- Jossinet, Fabrice -- Gumbart, James -- Mielke, Thorsten -- Berninghausen, Otto -- Schulten, Klaus -- Westhof, Eric -- Gilmore, Reid -- Mandon, Elisabet C -- Beckmann, Roland -- GM35687/GM/NIGMS NIH HHS/ -- P41 RR005969/RR/NCRR NIH HHS/ -- P41 RR005969-19/RR/NCRR NIH HHS/ -- P41-RR05969/RR/NCRR NIH HHS/ -- R01-GM067887/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1369-73. doi: 10.1126/science.1178535. Epub 2009 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Center Munich and Center for Integrated Protein Science, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universitat Munchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19933108" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cryoelectron Microscopy ; Dogs ; Image Processing, Computer-Assisted ; Membrane Proteins/*chemistry/*metabolism/ultrastructure ; Models, Molecular ; *Protein Biosynthesis ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; *Protein Transport ; Proteins/chemistry/*metabolism/ultrastructure ; Ribosomes/*metabolism/ultrastructure ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-11-26
    Description: The phytohormone abscisic acid (ABA) acts in seed dormancy, plant development, drought tolerance, and adaptive responses to environmental stresses. Structural mechanisms mediating ABA receptor recognition and signaling remain unknown but are essential for understanding and manipulating abiotic stress resistance. Here, we report structures of pyrabactin resistance 1 (PYR1), a prototypical PYR/PYR1-like (PYL)/regulatory component of ABA receptor (RCAR) protein that functions in early ABA signaling. The crystallographic structure reveals an alpha/beta helix-grip fold and homodimeric assembly, verified in vivo by coimmunoprecipitation. ABA binding within a large internal cavity switches structural motifs distinguishing ABA-free "open-lid" from ABA-bound "closed-lid" conformations. Small-angle x-ray scattering suggests that ABA signals by converting PYR1 to a more compact, symmetric closed-lid dimer. Site-directed PYR1 mutants designed to disrupt hormone binding lose ABA-triggered interactions with type 2C protein phosphatase partners in planta.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835493/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835493/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishimura, Noriyuki -- Hitomi, Kenichi -- Arvai, Andrew S -- Rambo, Robert P -- Hitomi, Chiharu -- Cutler, Sean R -- Schroeder, Julian I -- Getzoff, Elizabeth D -- ES010337/ES/NIEHS NIH HHS/ -- GM060396/GM/NIGMS NIH HHS/ -- GM37684/GM/NIGMS NIH HHS/ -- P42 ES010337/ES/NIEHS NIH HHS/ -- P42 ES010337-10S20008/ES/NIEHS NIH HHS/ -- R01 GM060396/GM/NIGMS NIH HHS/ -- R01 GM060396-08/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1373-9. doi: 10.1126/science.1181829. Epub 2009 Oct 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, Cell and Developmental Biology Section, University of California at San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19933100" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Immunoprecipitation ; Membrane Transport Proteins/*chemistry/genetics/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutant Proteins/chemistry/metabolism ; Phosphoprotein Phosphatases/metabolism ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Subunits/chemistry/metabolism ; Scattering, Small Angle ; *Signal Transduction ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...