ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters  (3)
  • Kluwer Academic Publishers  (2)
  • Copernicus  (1)
  • Annual Reviews
  • 2005-2009  (3)
  • 1990-1994
  • 1980-1984
  • 1960-1964
  • 1935-1939
Collection
Years
  • 2005-2009  (3)
  • 1990-1994
  • 1980-1984
  • 1960-1964
  • 1935-1939
  • +
Year
  • 1
    Publication Date: 2017-04-04
    Description: New chemical and isotope data for 74 groundwater samples from the southwestern slopes of Mt. Etna are presented. The processes responsible for the considerable chemical heterogeneity displayed by groundwaters were identified through factor analysis and by the use of mass balance calculations. A general hydrogeochemical model, concerning the interactions between the shallow volcanic aquifer, deep magmaderived fluids and the underlain sedimentary sequence, is also provided.
    Description: Published
    Description: 125-145
    Description: partially_open
    Keywords: Mt.Etna ; Hydrogeochemistry ; multivariate statistical analysis ; mass balance calculation ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Format: 535 bytes
    Format: 1646620 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Major ion content of 37 wet-only rainwater samples collected on the southern flank of Mount Etna volcano was investigated. Measured pH values range from 3.80 to 7.22 and display a positive correlation with Ca2+ and an inverse correlation with NO−3 , suggesting that anthropogenic NOx are the most effective acidifying agents while Ca, likely as solid CaCO3, is the prevailing proton acceptor. Na/Cl ratios indicate a dominant marine origin for both species, while K, mg and Ca contents point to additional sources (soil dust, fertilisers etc.). Nitrate and sulphate concentrations display a nearly constant ratio indicating a common anthropogenic origin, and only a few samples are characterised by sulphate excess. The analysis of time series reveals a good correlation between the excess sulphate in rainwater and SO2 fluxes from the summit craters plume. Non sea salt chloride contents show also a significant correlation with volcanic activity indicating a magmatic sulphur and chloride contribution to rainwater. Meteoric flux estimations point to a prevailing magmatic origin for sulphur in the collected rainwaters while sea spray is the main source of chlorine.
    Description: Published
    Description: 89–102
    Description: partially_open
    Keywords: Etna ; rainwater chemistry ; major ions ; volcanic activity ; meteoric fluxes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 732721 bytes
    Format: 535 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Volcanoes represent an important natural source of several trace elements to the atmosphere. For some species (e.g., As, Cd, Pb and Se) they may be the main natural source and thereby strongly influencing geochemical cycles from the local to the global scale. Mount Etna is one of the most actively degassing volcanoes in the world, and it is considered to be, on the long-term average, the major atmospheric point source of many environmental harmful compounds. Their emission occurs either through continuous passive degassing from open-conduit activity or through sporadic paroxysmal eruptive activity, in the form of gases, aerosols or particulate. To estimate the environmental impact of magma-derived trace metals and their depositions processes, rainwater and snow samples were collected at Mount Etna area. Five bulk collectors have been deployed at various altitudes on the upper flanks around the summit craters of the volcano; samples were collected every two week for a period of one year and analyzed for the main chemical-physical parameters (electric conductivity and pH) and for major and trace elements concentrations. Chemical analysis of rainwater clearly shows that the volcanic contribution is always prevailing in the sampling site closest to the summit crater (about 1.5 km). In the distal sites (5.5-10 km from the summit) and downwind of the summit craters, the volcanic contribution is also detectable but often overwhelmed by anthropogenic or other natural (seawater spray, geogenic dust) contributions. Volcanic contribution may derive from both dry and wet deposition of gases and aerosols from the volcanic plume, but sometimes also from leaching of freshly emitted volcanic ashes. In fact, in our background site (7.5 km in the upwind direction) volcanic contribution has been detected only following an ash deposition event. About 30 samples of fresh snow were collected in the upper part of the volcano, during the winters 2006 and 2007 to estimate deposition processes at high altitude during cold periods. Some of the samples were collected immediately after a major explosive event from the summit craters to understand the interaction between snow and fresh erupted ash. Sulphur, Chlorine and Fluorine, are the major elements that prevailingly characterize the volcanic contribution in atmospheric precipitation on Mount Etna, but high concentrations of many trace elements are also detected in the studied samples. In particular, bulk deposition samples display high concentration of Al, Fe, Ti, Cu, As, Rb, Pb, Tl, Cd, Cr, U and Ag, in the site most exposed to the volcanic emissions: median concentration values are about two orders of magnitude higher than those measured in our background site. Also in the snow samples the volcanic signature is clearly detectable and decreases with distance from the summit craters. Some of the analysed elements display very high enrichment values with respect to the average crust and, in the closest site to the summit craters, also deposition values higher than those measured in polluted urban or industrial sites.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Degassamento naturale
    Description: open
    Keywords: Mt. Etna ; trace elements ; rainwater ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...