ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate  (15)
  • INGV  (10)
  • American Geophysical Union  (3)
  • American Meteorological Society  (2)
  • 2005-2009  (15)
  • 1995-1999
  • 1970-1974
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2020-12-21
    Description: The variability of the Atlantic meridional Ocean Heat Transport (OHT) has been diagnosed from a simulation of a coupled ocean-atmosphere general circulation model, and the mechanisms responsible for this variability have been elucidated. It has been demonstrated that the interannual variability in Atlantic OHT is dominated by windstress-driven Ekman fluctuations. In contrast, the decadal and multidecadal variability is associated with the fluctuations of the Thermohaline Circulation (THC), driven by the fluctuations in deep convection over the Greenland-Iceland-Norwegian (GIN) Sea. The fluctuations of OHT induce Ocean Heat Content (OHC), and Sea Surface Temperature (SST) anomalies over the tropical and subtropical North Atlantic. The SST anomalies, in turn, have an impact on the atmosphere. The lead-lag relationships between the fluctuations of THC-related OHT and those of OHC and SST raise the possibility that a knowledge of OHT fluctuations could be used to predict variations in Atlantic Sea surface temperatures, and perhaps aspects of climate, several years in advance. A comparison of results from a second, independent, coupled model simulation is also presented, and similar conclusions reached.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: climate variability ; North Atlantic Oscillation (NAO) ; Ocean Heat Transport (OHT) ; Sea Surface Temperature (SST) ; ThermohalineCirculation (THC) ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1090477 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-07
    Description: The flow of ground water in a buried permeable paleochannel can be observed at the ground surface through its self-potential signature. We apply this method to delineate the Saint-Ferréol paleo-channel of the Rhone River located in Camargue, in the South East of France. Negative potentials, 30 mV (reference taken outside the paleochannel),are associated with ground water flow in this major sand-filled channel (500 m wide). Electrical resistivity is primarily controls by the salinity of the pore water. Electrical resistivity tomography and in situ sampling show the salinity of the water inside the paleo-channel is ten times smaller by comparison with the pore water of the surrounding sediments. Combining electrical resistivity surveys, self-potential data, and a minimum of drilling information, a 3-D reconstruction of the architecture of the paleo-channel is obtained showing the usefulness of this methodology for geomorphological reconstructions in this type of coastal environment.
    Description: - Observatoire de Recherche en Environnement (ORE)
    Description: Published
    Description: L07401
    Description: partially_open
    Keywords: Self-potential ; electrical resistivity tomography ; hydrogeology ; tomography ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 226125 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-01
    Description: Recent studies of observational data suggest that Sea Surface Temperature (SST) anomalies in the Atlantic Ocean have a significant influence on the atmospheric circulation in the Atlantic-European sector in early winter and in spring. After reviewing this work and showing that the spring signal is part of a global air-sea interaction, we analyze for comparison an ensemble of simulations with the ECHAM4 atmospheric general circulation model in T42 resolution forced by the observed distribution of SST and sea ice, and a simulation with the ECHAM4/OPA8 coupled model in T30 resolution. In the two cases, a significant influence of the Atlantic on the atmosphere is detected in the Atlantic-European sector. In the forced mode, ECHAM4 responds to SST anomalies from early spring to late summer, and also in early winter. The forcing involves SST anomalies not only in the tropical Atlantic, but also in the whole tropical band, suggesting a strong ENSO influence. The modeled signal resembles that seen in the observations in spring, but not in early winter. In the coupled mode, the Atlantic SST only has a significant influence on the atmosphere in summer. Although the SST anomaly is confined to the Atlantic, the summer signal shows some similarity with that seen in the forced simulations. However, there is no counterpart in the observations.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: air-sea interaction ; climate variability ; Atlantic SST anomalies ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2735697 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-19
    Description: A land surface model (LSM) has been included in the ECMWF Hamburg version 4 (ECHAM4) atmospheric general circulation model (AGCM). The LSM is an early version of the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) and it replaces the simple land surface scheme previously included in ECHAM4. The purpose of this paper is to document how a more exhaustive consideration of the land surface–vegetation processes affects the simulated boreal summer surface climate. To investigate the impacts on the simulated climate, different sets of Atmospheric Model Intercomparison Project (AMIP)-type simulations have been performed with ECHAM4 alone and with the AGCM coupled with ORCHIDEE. Furthermore, to assess the effects of the increase in horizontal resolution the coupling of ECHAM4 with the LSM has been implemented at different horizontal resolutions. The analysis reveals that the LSM has large effects on the simulated boreal summer surface climate of the atmospheric model. Considerable impacts are found in the surface energy balance due to changes in the surface latent heat fluxes over tropical and midlatitude areas covered with vegetation. Rainfall and atmospheric circulation are substantially affected by these changes. In particular, increased precipitation is found over evergreen and summergreen vegetated areas. Because of the socioeconomical relevance, particular attention has been devoted to the Indian summer monsoon (ISM) region. The results of this study indicate that precipitation over the Indian subcontinent is better simulated with the coupled ECHAM4–ORCHIDEE model compared to the atmospheric model alone.
    Description: Published
    Description: 255–278
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: partially_open
    Keywords: Land Atmosphere interactions ; Global climate models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Mud volcanoes represent the largest expression of natural methane release into the atmosphere; however, the gas flux has never been investigated in detail. Methane output from vents and diffuse soil degassing is herewith reported for the first time. Measurements were carried out at 5 mud volcano fields around Sicily (Italy). Each mud volcano is characterized by tens of vents and bubbling pools. In the quiescent phase, methane emission from single vents ranges between 0.01 and 6.8 kg/day. Diffuse soil leakage around the vents is in the order of 102–104 mg m 2 d 1. An exceptional flux of 106 mg m 2 d 1 was recorded close to an everlasting fire. Soil CH4 flux is positive even at large distances from the mud volcano fields suggesting a diffuse microseepage over wider areas. A total of at least 400 tons CH4 per year can be estimated over the area investigated alone ( 1.5 km2).
    Description: Published
    Description: 1215
    Description: partially_open
    Keywords: methane ; flux measurements ; Sicily ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 151114 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The Indian Summer Monsoon (ISM) is one of the main components of the Asian summer monsoon. It is well known that one of the starting mechanisms of a summer monsoon is the thermal contrast between land and ocean and that sea surface temperature (SST) and moisture are crucial factors for its evolution and intensity. The Indian Ocean, therefore, may play a very important role in the generation and evolution of the ISM itself. A coupled general circulation model, implemented with a high resolution atmospheric component, appears to be able to simulate the Indian summer monsoon in a realistic way. In particular, the features of the simulated ISM variability are similar to the observations. In this study, the relationships between ISM and Tropical Indian Ocean (TIO) SST anomalies are investigated, as well as the ability of the coupled model to capture those connections. The recent discovery of the Indian Ocean Dipole Mode (IODM) may suggest new perspectives in the relationship between ISM and TIO SST. A new statistical technique, the Coupled Manifold, is used to investigate the TIO SST variability and its relation with the Tropical Pacific Ocean (TPO). The analysis shows that the SST variability in the TIO contains a significant portion that is independent from the TPO variability. The same technique is used to estimate the amount of Indian rainfall variability that can be explained by the Tropical Indian Ocean SST. Indian Ocean SST anomalies are separated in a part remotely forced from the Tropical Pacific Ocean variability and a part independent from that. The relationships between the two SSTA components and the Indian monsoon variability are then investigated in detail.
    Description: Published
    Description: 3083-3105
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Indian Ocean ; monsoon ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  Etiope G., Caracausi A., Favara R., Italiano F., Baciu C. (2002) Methane emission from the mud volcanoes of Sicily (Italy). Geoph. Res. Letters 29, 14340-14343.
    Publication Date: 2017-04-04
    Description: The paper ‘‘Methane emission from the mud volcanoes of Sicily (Italy)’’ by Etiope et al. [2002] represents the first report ever done on experimental CH4 output data from subaerial mud volcanoes (MV). A review of available CH4 flux data and detailed discussion about the global implications of mud volcanic CH4 emission has been made elsewhere [Etiope and Klusman, 2002; Morner and Etiope, 2002]. [2] The comment by Kopf [2003] contributes to open discussions and to make the readership aware on how important this subject is. In this reply we wish to clarify that precise data of CH4 flux from geologic sources are beginning to be available only now. It would be opportune that the MV-expert community could agree in using a common unit for the gas flux. We propose t y 1 and Mt y 1, and not metres cubed, consistently with the data reported for the methane sources/sinks budget by the IPCC. [3] Sicilian MVs, the first to be measured in detail, are considerably much smaller than the Azeri Ashgil MV, mentioned by Kopf [2003], and it is therefore obvious to expect a lower gas flux. Anyway the Dashgil mud volcano flux data are not based on exact measurements but only on visual estimates of the bubbles [Hovland et al., 1997]. In order to fully reply to Kopf [2003], hereafter we briefly discuss the problem of how to estimate the total number of MVs in the world and present new data from other European MVs, recently investigated. Finally, we outline the global importance of mud volcanic CH4 emission, as Kopf [2003] and recent literature is stressing.
    Description: Published
    Description: 1094
    Description: partially_open
    Keywords: methane ; mud volcanoes ; helium ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 02. Cryosphere::02.03. Ice cores::02.03.02. Atmospheric Chemistry ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 192711 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-04
    Description: A 1000-year climate simulation is run with the ocean-atmosphere coupled model developed at the Institute Pierre- Simon Laplace (IPSL, Paris). No flux adjustment is used. The drift of the model is analyzed in terms of the seasurface temperature and deep ocean temperature. When the model's own equilibrium is reached, it is found that the Antarctic bottom water production experiences large-amplitude variation, oscillating between strong and weak episodes. This can yield oceanic temperature variation in the Southern Hemisphere and for the global mean.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: coupled climate model ; long-termclimate simulation ; oceanic overturning circulation ; model drift ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 767847 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-04
    Description: As a preliminary to the studies conducted by the individual Working Groups, a review has been undertaken of topics which are relevant to the space-weather phenomena that can occur. The ways in general that these can influence the state of the ionosphere are discussed. The various changes in propagation parameters that arise on Earth-space and terrestrial radio paths via the ionosphere are listed. International procedures for frequency allocation and assignment are explained and the extent to which these are influenced by propagation factors is addressed. The role of mitigation techniques to improve radio-system performance is also identified.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1024586 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    INGV
    Publication Date: 2019-11-04
    Description: The project called Decadal and Interdecadal Climate Variability: Scales Interactions Experiments (SINTEX), was conceived in 1997, stemming from a series of discussions and meetings within The EUROCLIVAR...
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: global climatology ; Scale Interactions Experiments ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1203691 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-11-04
    Description: Seasonal mean values of tropical Sea Surface Temperature (SST) and Atlantic/European Mean Sea Level Pressure (MSLP) from a 301-year coupled ocean/atmosphere model run are analysed statistically. Relations between the two fields are identified on both interannual and interdecadal timescales. It is shown that tropical SST variability affects Atlantic/European MSLP in winter. In particular, there appears to be a statistically significant relation, between the leading modes of variability, the El Niño/Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). During cold ENSO (La Niña) years the NAO tends to be in its positive phase, while the opposite is the case during warm ENSO (El Niño) years, although to a lesser extent. Similar analyses that are presented for gridded observational data, confirm this result, although here tropical Atlantic SST appears to be stronger related to the NAO than tropical Pacific SST. The linear predictability of a model simulated NAO index is estimated by making statistical predictions that are based on model simulated tropical SST. It is shown that the predictive skill is rather insensitive to the length of the training period. On the other hand, the skill score estimate can vary significantly as a result of interdecadal variability in the climate system. These results are important to bear in mind when making statistical seasonal forecasts that are based on observed SST.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: interactions ; climate variability ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 892167 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-11-04
    Description: Recent results indicate that climate predictions require models which can simulate accurately natural circulation regimes and their associated variability. The main purpose of this study is to investigate whether (and how) a coupled model can simulate the real world weather regimes. A 200-year control integration of a coupled GCM (the «SINTEX model») is considered. The output analysed consists of monthly mean values of Northern Hemisphere extended winter (November to April) 500-hPa geopotential heights. An Empirical Orthogonal Function (EOF) analysis is first applied in order to define a reduced phase space based on the leading modes of variability. Therefore the principal component PDF in the reduced phase space spanned by two leading EOFs is computed. Based on a PDF analysis in the phase space spanned by the leading EOF1 and REOF2, substantial evidence of the nongaussian regime structure of the SINTEX northern winter circulation is found. The model Probability Density Function (PDF) exhibits three maxima. The 500-hPa height geographical patterns of these density maxima are strongly reminiscent of well-documented Northern Hemisphere weather regimes. This result indicates that the SINTEX model can not only simulate the non-gaussian structure of the climatic attractor, but is also able to reproduce the natural modes of variability of the system.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: Coupled General Circulation Model ; systematic error ; non-linear dynamics ; flow regimes ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3337507 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-11-04
    Description: Most global climate models simulate a weakening of the North Atlantic Thermohaline Circulation (THC) in response to enhanced greenhouse warming. Both surface warming and freshening in high latitudes, the so-called sinking region, contribute to the weakening of the THC. Some models simulate even a complete breakdown of the THC at sufficiently strong forcing. Here results from a state-of-the-art global climate model are presented that does not simulate a weakening of the THC in response to greenhouse warming. Large-scale air-sea interactions in the tropics, similar to those operating during present-day El Niños, lead to anomalously high salinities in the tropical Atlantic. These are advected into the sinking region, thereby increasing the surface density and compensating the effects of the local warming and freshening. The results of the model study are corroborated by the analysis of observations.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: thermohaline circulation ; air-sea ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 577444 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-11-04
    Description: A new coupled GCM (SINTEX) has been developed. The model is formed by the atmosphere model ECHAM-4 and the ocean model ORCA. The atmospheric and oceanic components are coupled through OASIS. The domain is global and no flux correction is applied. In this study, we describe the ability of the coupled model to simulate the main features of the observed climate and its dominant modes of variability in the tropical Indo-Pacific. Three long experiments have been performed with different horizontal resolution of the atmospheric component in order to assess a possible impact of the atmosphere model resolution onto the simulated climate. Overall, the mean state is captured reasonably well, though the simulated SST tends to be too warm in the tropical Eastern Pacific and there is a model tendency to produce a double ITCZ. The model gives also a realistic representation of the temperature structure at the equator in the Pacific and Indian Ocean. The slope and the structure of the equatorial thermocline are well reproduced. Compared to the observations, the simulated annual cycle appears to be underestimated in the eastern equatorial Pacific, whereas a too pronounced seasonal variation is found in the Central Pacific. The main basic features of the interannual variability in the tropical Indo-Pacific region are reasonably well reproduced by the model. In the Indian Ocean, the characteristics of the simulated interannual variability are very similar to the results found from the observations. In the Pacific, the modelled ENSO variability appears to be slightly weaker and the simulated period a bit shorter than in the observations. Our results suggest that, both the simulated mean state and interannual variability are generally improved when the horizontal resolution of the atmospheric mode component is increased.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: coupled models ; climate variability ; tropics ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 4870636 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-11-04
    Description: Mud volcanoes and microseepage are two important natural sources of atmospheric methane, controlled by neotectonics and seismicity. Petroleum and gas reservoirs are the deep sources, and faults and fractured rocks serve as main pathways of degassing to the atmosphere. Violent gas emissions or eruptions are generally related to seismic activity. The global emission of methane from onshore mud volcanoes has recently been improved thanks to new experimental data sets acquired in Europe and Azerbaijan. The global estimate of microseepage can be now improved on the basis of new flux data and a more precise assessment of the global area in which microseepage may occur. Despite the uncertainty of the various source strengths, the global geological methane flux is clearly comparable to or higher than other sources or sinks considered in the tables of the Intergovernmental Panel on Climate Change.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: methane ; lithosphere degassing ; mudvolcanoes ; greenhouse gas ; geodynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 991883 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...