ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous  (1)
  • Baroclinic instability  (1)
  • Cambridge University Press  (2)
  • 2005-2009  (2)
  • 1995-1999
  • 1980-1984
Collection
  • Articles  (2)
Years
  • 2005-2009  (2)
  • 1995-1999
  • 1980-1984
Year
  • 1
    Publication Date: 2017-04-04
    Description: Twenty eruptive events from the Northeast Crater of Stromboli volcano recorded by a thermal monitoring camera in early 2004 were analysed in order to understand the eruptive dynamics. Selected eventswere chosen to be typical of explosions that characterize the steady activity of Stromboli in terms of jet height and duration. Most of the explosions consisted of clast-rich single bursts, originating from the same vent inside the Northeast Crater. Conspicuous ash emission was scarce. Eruptions were preceded by the flashing of a perturbation wave characterized by low temperatures and an average propagation velocity of about 35–100 m s−1. This perturbation was thought to be caused by the bursting of the gas slug at the bottom of the crater and is interpreted as an air wave. This was immediately followed by the expansion of a jet of ‘hot’ gas and particles, at a velocity of 35–75 m s−1. Ejecta coarser than 138 cm appeared ∼1.6–2 s after the onset of the explosion, moving at a variable velocity (30–60 m s−1). Eruptive events were either vertical or inclined 7–13◦ towards the NNW. This inclination is thought to be a consequence either of the morphology of the conduit, following modest rock falls that partially obstructed the uppermost part of the crater, or of the displacement of the internal conduit due to the explosive activity of the volcano. The instability of the summit area is a further possible cause of the deformation of the conduit.
    Description: This work was partially funded by the Istituto Nazionale di Geofisica e Vulcanologia and the Dipartimento della Protezione Civile, Italy, project INGVDPC V2
    Description: Published
    Description: 591–601
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: explosive dynamic ; thermal video monitoring ; volcano-tectonic structures ; volcano collapses ; Stromboli ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Cambridge University Press
    Publication Date: 2022-05-26
    Description: Author Posting. © Cambridge University Press, 2003. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 490 (2003): 189-215, doi:10.1017/S0022112003005007.
    Description: The baroclinic instability of a zonal current on the beta-plane is studied in the context of the two-layer model when the shear of the basic current is a periodic function of time. The basic shear is contained in a zonal channel and is independent of the meridional direction. The instability properties are studied in the neighbourhood of the classical steady-shear threshold for marginal stability. It is shown that the linear problem shares common features with the behaviour of the well-known Mathieu equation. That is, the oscillatory nature of the shear tends to stabilize an otherwise unstable current while, on the contrary, the oscillation is able to destabilize a current whose time-averaged shear is stable. Indeed, this parametric instability can destabilize a flow that at every instant possesses a shear that is subcritical with respect to the standard stability threshold. This is a new source of growing disturbances. The nonlinear problem is studied in the same near neighbourhood of the marginal curve. When the time-averaged flow is unstable, the presence of the oscillation in the shear produces both periodic finite-amplitude motions and aperiodic behaviour. Generally speaking, the aperiodic behaviour appears when the amplitude of the oscillating shear exceeds a critical value depending on frequency and dissipation. When the time-averaged flow is stable, i.e. subcritical, finite-amplitude aperiodic motion occurs when the amplitude of the oscillating part of the shear is large enough to lift the flow into the unstable domain for at least part of the cycle of oscillation. A particularly interesting phenomenon occurs when the time-averaged flow is stable and the oscillating part is too small to ever render the flow unstable according to the standard criteria. Nevertheless, in this regime parametric instability occurs for ranges of frequency that expand as the amplitude of the oscillating shear increases. The amplitude of the resulting unstable wave is a function of frequency and the magnitude of the oscillating shear. For some ranges of shear amplitude and oscillation frequency there exist multiple solutions. It is suggested that the nature of the response of the finite-amplitude behaviour of the baroclinic waves in the presence of the oscillating mean flow may be indicative of the role of seasonal variability in shaping eddy activity in both the atmosphere and the ocean.
    Description: J.P.’s research is supported in part by a grant from NSF, OCE 9901654.
    Keywords: Baroclinic instability ; Baroclinic waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 393774 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...