ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (193,116)
  • 2005-2009  (184,136)
  • 1995-1999  (7,819)
  • 1980-1984  (1,109)
  • 1955-1959  (52)
Collection
Keywords
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-06-25
    Description: During the fourth Antarctic voyage ANT-IV of the research icebreaker POLARSTERN standard meteorological measurements have been performed. The measurements include 3-hourly synoptic observations as well as daily upper air soundings. The measurements started on September 6 1985 at Bremerhaven and were terminated at April 28 1986 in Punta Arenas. The 3-hourly synoptic observations are performed following the instructions of the FM 13 ships code defined by the World Meteorological Organization (WMO). The datasets include automatic measurements such as mean ship's speed, wind velocity, wind direction, air temperature, water temperature as well as visual observations such as total cloud amount, present weather, clouds, height and period of swell waves, ice classification. The visual observation are not performed during night time. For the upper air soundings VAISALA RS80 radiosondes, carried by helium-filled balloons (TOTEX 350 - 1500) were used. Data reception and evaluation were carried out by a MicroCora System (VAISALA). The upper air soundings include profile measurements of pressure, temperature, relative humidity and wind vector. Usually the soundings started at the heliport (10 m above sea level) and terminated between 15 and 37 km. The height of the measurements was calculated by applying the barometric formula. The wind vector was determined with the aid of the OMEGA navigation system.
    Keywords: ANT-IV/1a; ANT-IV/1b; ANT-IV/1c; ANT-IV/2; ANT-IV/3; ANT-IV/4; AWI_Meteo; Canarias Sea; CT; Meteorological Long-Term Observations @ AWI; North Atlantic Ocean; North Sea; Polarstern; PS08; PS08/01331; PS08/01332; PS08/01333; PS08/01334; PS08/01335; PS08/01336; PS08/01337; PS08/01338; PS08/01339; PS08/01340; PS08/01341; PS08/01342; PS08/01343; PS08/01344; PS08/01345; PS08/01346; PS08/01347; PS08/01348; PS08/01349; PS08/01350; PS08/01351; PS08/01352; PS08/01353; PS08/01354; PS08/01355; PS08/01356; PS08/01357; PS08/01358; PS08/01359; PS08/01360; PS08/01361; PS08/01362; PS08/01363; PS08/01364; PS08/01365; PS08/01366; PS08/01367; PS08/01368; PS08/01369; PS08/01370; PS08/01371; PS08/01372; PS08/01373; PS08/01374; PS08/01375; PS08/01376; PS08/01377; PS08/01378; PS08/01379; PS08/01380; PS08/01381; PS08/01382; PS08/01383; PS08/01384; PS08/01385; PS08/01386; PS08/01387; PS08/01388; PS08/01389; PS08/01390; PS08/01391; PS08/01392; PS08/01393; PS08/01394; PS08/01395; PS08/01396; PS08/01397; PS08/01398; PS08/01399; PS08/01400; PS08/01401; PS08/01402; PS08/01403; PS08/01404; PS08/01405; PS08/01414; PS08/01415; PS08/01416; PS08/01417; PS08/01418; PS08/01419; PS08/01420; PS08/01421; PS08/01422; PS08/01423; PS08/01424; PS08/01425; PS08/01426; PS08/01427; PS08/01428; PS08/01429; PS08/01430; PS08/01431; PS08/01432; PS08/01433; PS08/01434; PS08/01435; PS08/01436; PS08/01437; PS08/01438; PS08/01439; PS08/01440; PS08/01441; PS08/01442; PS08/01443; PS08/01444; PS08/01445; PS08/01446; PS08/01447; PS08/01448; PS08/01449; PS08/01450; PS08/01451; PS08/01452; PS08/01453; PS08/01454; PS08/01455; PS08/01456; PS08/01457; PS08/01458; PS08/01459; PS08/01460; PS08/01461; PS08/01462; PS08/01463; PS08/01464; PS08/01465; PS08/01466; PS08/01467; PS08/01468; PS08/01469; PS08/01470; PS08/01471; PS08/01472; PS08/01473; PS08/01474; PS08/01475; PS08/01476; PS08/01477; PS08/01478; PS08/01479; PS08/01480; PS08/01481; PS08/01482; PS08/01483; PS08/01484; PS08/01485; PS08/01486; PS08/01487; PS08/01488; PS08/01489; PS08/01490; PS08/01491; PS08/01492; PS08/01493; PS08/01494; PS08/01495; PS08/01496; PS08/01497; PS08/01498; PS08/01499; PS08/01500; PS08/01501; PS08/01502; PS08/01503; PS08/01504; PS08/01505; PS08/01506; PS08/01507; PS08/01508; PS08/01509; PS08/01510; PS08/01511; PS08/01512; PS08/01513; PS08/01514; PS08/01515; PS08/01516; PS08/01517; PS08/01518; PS08/01519; PS08/01520; PS08/01521; PS08/01522; PS08/01523; PS08/1a-track; PS08/1b-track; PS08/1c-track; PS08/2-track; PS08/3-track; PS08/4-track; PS08 NOAMP; RADIO; Radiosonde; South Atlantic Ocean; Underway cruise track measurements
    Type: Dataset
    Format: application/zip, 191 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wollenburg, Jutta Erika; Mackensen, Andreas; Kuhnt, Wolfgang (2007): Benthic foraminiferal biodiversity response to a changing Arctic palaeoclimate in the last 24.000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 255(3-4), 195-222, https://doi.org/10.1016/j.palaeo.2007.05.007
    Publication Date: 2024-06-25
    Description: Four sediment cores recovered from 1000 to 2500 m water depth in the Arctic Ocean, tracing the inflowing Atlantic water from Fram Strait, Yermak Plateau, northern Barents Sea continental slope as far as the Laptev Sea, have been analyzed for species richness and diversity. Samples were wet sieved after freeze-drying using a 63-µm sieve. Where possible at least 300 specimens were counted from the size fraction 〉63 µm, however, samples from deglacial periods are often affected by carbonate dissolution. In such samples foraminiferal numbers are low. Samples containing less than 40 specimens were excluded from statistical analyses. Because we are aware that specimen numbers 〈100 specimen are still critical for H analyses, core sections containing less than 100 specimens are highlighted in the figures. Here, we will characterize biodiversity trends by the two most widely used biodiversity measurements, the information function H (Buzas and Gibson, 1969) with its decomposition equation ln(S) and ln(E) (Buzas and Hayek, 1996), and the Fisher Alpha Index (Fisher, Corbett, and Williams, 1943). For spectral analysis the Fisher alpha record of core PS2837-5 was resampled at equally spaced 100-year intervals. For the spectral analysis, two methodes were used within the ANALYSERIES software package (Paillard et al., 1996): 1. The Blackman-Tuckey (1958) for its high confidence of the results; 2. The maximum entropy method (e.g. Haykin, 1983) for its high resolution. The cores reveal well-correlated biodiversity maxima and minima. Distinct periodicities of species richness variability of 1.57 kyr and 0.76 kyr characterize the Late Weichselian, and of 1.16 kyr and 0.54 kyr even more pronounced the Holocene. The biodiversity maxima/minima coincide with terrestrial and marine warm and cool events at high northern latitude. We suggest that either the physiology of most rare species is temperature sensitive, or sustained food supply increased the taxonomic richness during warmer intervals.
    Keywords: ARK-III/3; ARK-IX/4; ARK-VIII/3; ARK-XIII/2; AWI_Paleo; Fram Strait; GIK21290-4 PS07/579; Gravity corer (Kiel type); KAL; Kasten corer; Laptev Sea; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS07; PS1290-4; PS19/245; PS19 ARCTIC91; PS2212-3; PS2458-4; PS27; PS27/038; PS2837-5; PS44; PS44/065; SL; Yermak Plateau
    Type: Dataset
    Format: application/zip, 8 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Berner, Heinrich (1991): Mechanismen der Sedimentbildung in der Framstrasse, im Arktischen Ozean und in der Norwegischen See. Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 20, 167 pp, urn:nbn:de:gbv:46-ep000106655
    Publication Date: 2024-06-25
    Description: The grain size distribution and clay mineral composition of lithogenic particles of ice-rafted material, sinking matter, surface sediments, as well as from deep-sea cores are analysed. The samples were collected in the Fram Strait, the Arctic Ocean, and the Norwegian Sea during several expeditions with the research vessels "Polarstern", "Meteor" and "Poseidon", and Norwegian rearch vessels. Sinking matter was caught with sediment traps, fitted with timer-controlled sample changers, which had been deployde in the sea for usually one year.
    Keywords: 104-1; 109-1; 111-2; 114-1; 117-1; 120-1; 121-1; 122-2; 57-04; 57-06; 57-07; 57-08; 57-09; 57-11; 57-12; 57-13; 57-14; 57-20; 58-08; Arctic Ocean; ARK-I/3; ARK-II/4; ARK-II/5; ARK-III/3; ARK-IV/3; BC; BI-1_trap; Box corer; Fram Strait; FS-1_trap; FS-2_trap; FS-3_trap; GC; GeoB; Geosciences, University of Bremen; Giant box corer; GIK16103-1; GIK16104-1; GIK16105-1; GIK16109-1; GIK16122-1; GIK16129-1; GIK16131-1; GIK16132-1; GIK16133-1; GIK16135-1; GIK16136-1; GIK16138-1; GIK16139-1; GIK16143-1; GIK16144-1; GIK16145-1; GIK16146-1; GIK16147-1; GIK16149-1; GIK16150-1; GIK16152-1; GIK16156-1; GIK16157-1; GIK16158-1; GIK16161-1; GIK16162-1; GIK16163-1; GIK16167-1; GIK16168-1; GIK16169-1; GIK16170-1; GIK16172-1; GIK16175-1; GIK16176-1; GIK16180-1; GIK21289-1 PS07/578; GIK21290-3 PS07/579; GIK21291-3 PS07/581; GIK21292-3 PS07/582; GIK21293-3 PS07/583; GIK21294-3 PS07/584; GIK21295-3 PS07/586; GIK21295-5 PS07/586; GIK21296-3 PS07/587; GIK21297-3 PS07/588; GIK21298-3 PS07/590; GIK21300-3 PS07/592; GIK21301-2 PS07/593; GIK21302-2 PS07/594; GIK21303-2 PS07/595; GIK21305-1 PS07/597; GIK21306-2 PS07/598; GIK21307-2 PS07/599; GIK21308-3 PS07/601; GIK21309-3 PS07/602; GIK21310-4 PS07/603; GIK21311-3 PS07/605; GIK21312-3 PS07/606; GIK21314-3 PS07/608; GIK21316-5 PS07/612; GIK21318-4 PS07/615; GIK21319-2 PS07/617; GIK21322-3 PS07/626; GIK21323-3 PS07/627; GIK21513-8 PS11/276-8; GIK21514-5 PS11/278-5; GIK21515-10 PS11/280-10; GIK21516-5 PS11/282-5; GIK21518-13 PS11/287-13; GIK21519-10 PS11/296-10; GIK21520-10 PS11/310-10; GIK21521-13 PS11/340-13; GIK21522-18 PS11/358-18; GIK21523-14 PS11/362-14; GIK21524-1 PS11/364-1; GIK21525-2 PS11/365-2; GIK21528-7 PS11/372-7; GIK21529-7 PS11/376-7; GIK21530-3 PS11/382-3; GIK21532-1 PS11/396-1; GIK23055-1; GIK23056-2; GIK23057-1; GIK23058-1; GIK23059-1; GIK23060-1; GIK23061-3; GIK23062-2; GIK23063-1; GIK23064-2; GIK23065-1; GIK23066-1; GIK23067-2; GIK23068-1; GIK23069-1; GIK23070-2; GIK23071-1; GIK23072-1; GIK23073-2; GIK23074-2; GIK23126-1 PS03/126; GIK23138-1 PS03/138; GIK23150-1 PS03/150; GIK23189-1 PS03/189; GIK23206-1 PS03/206; GIK23207-1 PS03/207; GIK23210-1 PS03/210; GIK23211-1 PS03/211; GIK23216-1 PS03/216; GIK23217-1 PS03/217; GIK23220-1 PS03/220; GIK23221-1 PS03/221; GIK23222-1 PS03/222; GIK23229-1 PS05/414; GIK23230-1 PS05/416; GIK23231-2 PS05/417; GIK23232-1 PS05/418; GIK23233-1 PS05/420; GIK23235-1 PS05/422; GIK23240-1 PS05/428; GIK23241-1 PS05/429; GIK23243-2 PS05/431; GIK23244-1 PS05/449; GIK23247-2 PS05/452; GIK23248-1 PS05/453; GKG; Gravity corer; Gravity corer (Kiel type); Håkon Mosby; HM52; HM52-02; HM57; HM57-04; HM57-05; HM57-06; HM57-07; HM57-08; HM57-09; HM57-11; HM57-12; HM57-13; HM57-14; HM57-20; HM58; HM58-02; HM58-08; HM82/83; ICE; Iceland Sea; Ice station; LB-1_trap; Lofoten Basin; M107-1; M118-1; M2/2; Meteor (1986); Mooring (long time); MOORY; Na-1_trap; Nansen Basin; NB-1_trap; Norway Slope; Norwegian Sea; Polarstern; PS03; PS05; PS07; PS1050-1; PS1060-1; PS1071-1; PS11; PS11/269-1; PS1105-1; PS1120-2; PS1121-1; PS1124-1; PS1125-1; PS1127-1; PS1128-1; PS1130-1; PS1131-1; PS1132-1; PS1229-1; PS1230-1; PS1231-2; PS1232-1; PS1233-1; PS1235-1; PS1240-1; PS1241-1; PS1243-2; PS1244-1; PS1247-2; PS1248-1; PS1289-1; PS1290-3; PS1291-3; PS1292-3; PS1293-3; PS1294-3; PS1295-3; PS1295-5; PS1296-3; PS1297-3; PS1298-3; PS1300-3; PS1301-2; PS1302-2; PS1303-2; PS1305-1; PS1306-2; PS1307-2; PS1308-3; PS1309-3; PS1310-4; PS1311-3; PS1312-3; PS1314-3; PS1316-5; PS1318-4; PS1319-2; PS1322-3; PS1323-3; PS1511-1; PS1513-8; PS1514-5; PS1515-10; PS1516-5; PS1518-13; PS1519-10; PS1520-10; PS1521-13; PS1522-18; PS1523-14; PS1524-1; PS1525-2; PS1528-7; PS1529-7; PS1530-3; PS1532-1; Quaternary Environment of the Eurasian North; QUEEN; Sea_Ice_A; Sea_Ice_B; Sea_Ice_C; Sea_Ice_D; SL; SP-1; SP-1_trap; Svalbard; Trap, sediment; TRAPS; Voering Plateau; Voring Plateau; VP-2_trap; Western Djupet
    Type: Dataset
    Format: application/zip, 18 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Agwu, Chiori O C; Beug, Hans-Jürgen (1982): Palynological studies of marine sediments off the West African coast. Meteor Forschungsergebnisse, Deutsche Forschungsgemeinschaft, Reihe C Geologie und Geophysik, Gebrüder Bornträger, Berlin, Stuttgart, C36, 1-30
    Publication Date: 2024-06-25
    Description: Seven sediment cores from the cruises of the "Meteor" and "Valdivia" were examined palynologically. The cores were retrieved from the lower continental slope in the area of between 33.5° N and 8° N, off the West African coast. Most of the cores contain sediments from the last Glacial and Interglacial period. In some cases, the Holocene sediments are missing. Some individual cores contain sediments also from earlier Glacial and Interglacial periods. The main reason for making this palynological study was to find out the differences between the vegetation of Glacial and Interglacial periods in those parts of West Africa which at present belong to the Mediterranean zone, the Sahara and the zones of the savannas and tropical forests. In today's Mediterranean vegetation zone at core 33.5° N, forests and deciduous forests in particular, are missing during Glacial conditions. Semi-deserts are found instead of these. In the early isotope stage 1, there is a very significant development of forests which contain evergreen oaks; this is the Mediterranean type of vegestation development. The Sahara type of vegetation development is shown in four cores from between 27° N and 19° N. The differences between Glacial and Interglacial periods are very small. It must be assumed therefore that in this latitudes, both Glacial and Interglacial conditions gave rise to desert generally. The results are in favour of a slightly more arid climate during Glacial and more humid one during Interglacial periods. The southern boundary of the Sahara and the adjacent savannas with grassland and tropical woods were situated more to the south during the Glacial periods than they were during the Interglacial ones. In front of today's savanna belt, it can be seen from the palynological results that there are considerable differences between the vegetation of Glacial and Interglacial periods. The woods are more important in Interglacial periods. During the Glacial periods these are replaced from north to south decreasingly by grassland (savanna and rainforest type of vegetation development). The southern limit of the Sahara during stage 2 was somewhat between 12° N and 8° N which is between 1.5 and 5 degrees in latitude further south than it i s today. Not only do these differences in climate and vegetation apply to the maximum of the last Glacial and for the Holocene, but they apparently apply also to the older Glacial and Interglacial periods, where they have been found in the profiles. The North African deset belt can be said to have expanded during Glacial times both towards the north and towards the south. All the available evidence of this study indicates that the grass land or the semi-desert of the Southern Europe cam einto connection with those of the N Africa; there could not have been any forest zone between them. The present study was also a good opportunity for investigating some of the basic marine palynological problems. The very well known overrepresentation of pollen grains of the genus Pinus in marine sediments can be traced as fa as 21° N. The present southern limit for the genus Pinus is on the Canaries and on the African continent as approximately 31° N. Highest values of Ephedra pollen grains even occur south of the main area of the present distribution of that genus. These does not seem to be any satisfactory explanation for this. In general, it would appear that the transport of pollen grains from the north is more important than transport from the south. The results so far, indicate strongly that further palynological studies are necessary. These should concentrate particularly on cores from between 33° N and 27° N as well as between 17° N and 10° N. It would also be useful to have a more detailed examination of sediments from the last Intergalcial period (substage 5 e). Absolute pollen counts and more general examination of surface samples would be desirable. Surface samples should be taken from the shelf down to the bottom of the continental slope in different latitudes.
    Keywords: ARKTIS 1993; East Atlantic; GIK12309-3; GIK12310-4; GIK12329-6; GIK12392-1; KAL; Kasten corer; M12392-1; M25; M30; M30_184; M8_017-2; M8017B; Meteor (1964); PC; Piston corer; South Atlantic Ocean; SPC; Sphincter corer; VA132; VA132-18-1; Valdivia (1961); Westafrika 1973
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ganssen, Gerald M (1983): Dokumentation von küstennahmen Auftrieb anhand stabiler Isotope in rezenten Foraminiferen vor Nordwest-Afrika. Meteor Forschungsergebnisse, Deutsche Forschungsgemeinschaft, Reihe C Geologie und Geophysik, Gebrüder Bornträger, Berlin, Stuttgart, C37, 1-46
    Publication Date: 2024-06-25
    Description: Foraminifera shells from modern sediments document the hydrography of the coastal upwelling region off Northwest-Africa (12-35° N) through the stable isotopic composition of their shells. Oxygen isotopes in planktonic foraminifers reflect sea surface temperatures (SST) during the main growing season of the differnt species: Globigerinoides ruber (pink and white) and G. sacculifer delineate the temperatures of the summer, Globorotalia inflata and Pulleniatina obliquiloculata those of the winter. Oxygen isotopes on Globigerina bulloides document temperature ranges of the upwelling seasons. d18O values in planktonic foraminifera from plankton hauls resemble those from the surface sediment samples, if the time of the plankton collection is identical with that of the main growing season of the species. The combined isotopic record of G. ruber (white) and G. inflata clearly reveals the latitudinal variations of the annual mean SST. The deviation of the d18O values from both species from their common mean is a scale for the seasonality, i.e. the maximum temperature range within one year. Thus in the summer upwelling region (north of 25° N) seasonality is relatively low, while it becomes high in the winter upwelling region south of 20° N. Furthermore, the winter upwelling region is characterized by relatively high d18O values - indicating low temperatures - in G. bulloides, the region of summer upwelling by relatively low d180 values compared with the constructed annual mean SST. Generally, carbon isotopes from the plankton hauls coincide with those from sediment surface samples. The enrichment of 13C isotopes in foraminifers from areas with high primary production can be caused by the removal of 12C from the total dissolved inorganic carbon during phytoplankton blooms. It is found that carbon isotopes from plankton hauls off Northwest-Africa are relatively enriched in 13C compared with samples from the western Atlantic Ocean. Also shells of G. ruber (pink and white) from upwelling regions are enriched in the heavier isotope compared with regions without upwelling. In the sediment, the enrichement of 13C due to high primary production can only be seen in G. bulloides from the high fertile upwelling region south of 20° N. North of this latitude values are relatively low. An enrichment of 12C is observed in shells of G. ruber (pink), G. inflata and P. obliquiloculata from summer-winter- and perennial upwelling regions respectively. Northern water masses can be distinguished from their southern counterparts by relatively high oxygen and carbon values in the „living“ (=stained) benthic foraminifera Uvigerina sp. and Hoeglundina elegans. A tongue of the Mediterranean Outflow water can be identified far to the south (20° N) by 13C-enriched shells of these benthic foraminifera. A zone of erosion (15-25° N, 300-600 m) with a subrecent sediment surface can be mapped with the help of oxygen isotopes in „dead“ benthic specimens. Comparison of d18O values in aragonitic and calcitic benthic foraminifers does not show a differential influence of temperature on the isotopic composition in the carbonate. However, carbon isotopes reflect slightly differences under the influence of temperature.
    Keywords: 17KL; 1KL; 21KL; 42KL; 82KL; 83KL; 92KL; Atlantic Ocean; BCR; Bottle, Niskin; Box corer (Reineck); East Atlantic; FBG; FGGE-Equator 79 - First GARP Global Experiment; Giant box corer; GIK/IfG; GIK12301-5; GIK12302-3; GIK12303-3; GIK12304-3; GIK12305-2; GIK12306-2; GIK12307-3; GIK12308-2; GIK12309-1; GIK12310-1; GIK12313-2; GIK12314-2; GIK12315-1; GIK12316-1; GIK12317-1; GIK12322-2; GIK12323-1; GIK12324-1; GIK12325-4; GIK12326-2; GIK12327-2; GIK12328-1; GIK12329-2; GIK12338-1; GIK12339-2; GIK12340-3; GIK12341-2; GIK12342-1; GIK12343-1; GIK12344-2; GIK12345-3; GIK12346-1; GIK12347-1; GIK12349-3; GIK13220-1; GIK13221-1; GIK13222-1; GIK13223-3; GIK13224-2; GIK13225-2; GIK13230-1; GIK13231-1; GIK13232-1; GIK13233-1; GIK13234-1; GIK13235-2; GIK13236-1; GIK13237-1; GIK13238-1; GIK13273-1; GIK13274-1; GIK13275-1; GIK13276-1; GIK13279-3; GIK13280-1; GIK13282-1; GIK13283-2; GIK13289-1; GIK13290-1; GIK13526-4; GIK13527-1; GIK13528-2; GIK13529-1; GIK13530-1; GIK13532-2; GIK13533-1; GIK13534-1; GIK13536-2; GIK13557-1; GIK13583-1; GIK13584-2; GIK13585-1; GIK13586-3; GIK13587-1; GIK13588-2; GIK15626-1; GIK15627-2; GIK15627-5; GIK15628-4; GIK15629-1; GIK15630-1; GIK15631-1; GIK15632-1; GIK15634-1; GIK15635-2; GIK15637-3; GIK15638-2; GIK15639-1; GIK15640-1; GIK15641-2; GIK15642-1; GIK15643-1; GIK15644-1; GIK15645-1; GIK15646-1; GIK15647-1; GIK15648-1; GIK15651-3; GIK15651-4; GIK15652-2; GIK15654-1; GIK15657-1; GIK15658-1; GIK15658-2; GIK15659-1; GIK15660-1; GIK15663-1; GIK15664-1; GIK15666-8; GIK15666-9; GIK15667-1; GIK15669-2; GIK15670-1; GIK15672-2; GIK15673-2; GIK15676-2; GIK15677-1; GIK15678-1; GIK15678-3; GIK15679-2; GIK16002-1; GIK16003-1; GIK16005-1; GIK16012-3; GIK16024-1; GIK16032-1; GKG; Grab (Shipek); Institute for Geosciences, Christian Albrechts University, Kiel; M25; M51; M51-13; M53; M53_005; M53_006; M53_008; M53_009; M53_010; M53_011; M53_014; M53_020; M53_022; M53_158; M53_164; M53_166; M53_167; M53_169; M53_170-1; M53_172-1; M53_173-2; M60; Meteor (1964); MG; MSN; Multiboxcorer; Multiple opening/closing net; NIS; Northeast Atlantic; off West Africa; Photo grab; PLA; Plankton net; SHIPEK; SPC; Sphincter corer; SUBTROPEX 82; VA-10/3; VA-28/2; VA79-10NET; VA79-17KLa; VA79-1KLa; VA79-21KLa; VA79-42KLa; VA79-82KLa; VA79-83KLa; VA79-92KLa; Valdivia (1961); van Veen Grab; VGRAB
    Type: Dataset
    Format: application/zip, 11 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stein, Ruediger; Grobe, Hannes; Hubberten, Hans-Wolfgang; Marienfeld, Peter; Nam, Seung-Il (1993): Latest Pleistocene to Holocene changes in glaciomarine sedimentation in Scoresby Sund and along the adjacent East Greenland Continental Maring: preliminary results. Geo-Marine Letters, 13, 9-16, https://doi.org/10.1007/BF01204387
    Publication Date: 2024-06-25
    Description: High-resolution stable oxygen and carbon isotope analyses and detailed sedimentological and geochemical investigations were performed in order to (i) reconstruct the paleoclimate and paleoceanography of the Greenland Sea associated with late Quaternary glacial-interglacial cycles, and (ii) to link the terrestrial and deep-sea climatic records. The reconstruction of the paleoenvironmental history of the East Greenland margin and the correlation between the terrestrial and deep sea records are major objectives of the ESF-PONAM-Programme (European Science Foundation - Polar North Atlantic Margins). For this study 16 gravity and 2 box cores were recovered along the East Greenland continental margin between 69° N and 72° N on three W-E transects running from the shelf to the deep sea.
    Keywords: ARK-V/3b; ARK-VII/3b; AWI_Paleo; GIK21726-1 PS13/193; Gravity corer (Kiel type); Greenland Sea; Greenland Shelf; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS13 GRÖKORT; PS17; PS17/239; PS1726-1; PS1916-1; Quaternary Environment of the Eurasian North; QUEEN; SL
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Assmy, Philipp; Henjes, Joachim; Klaas, Christine; Smetacek, Victor (2007): Mechanisms determining species dominance in a phytoplankton bloom induced by the iron fertilization experiment EisenEx in the Southern Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 54(3), 340-362, https://doi.org/10.1016/j.dsr.2006.12.005
    Publication Date: 2024-06-25
    Description: The dynamics of phytoplankton species populations recorded during the 3-week, iron-fertilization experiment EisenEx carried out in spring in the Antarctic Polar Frontal Zone are presented and discussed as the difference between growth and mortality rates. Only two cosmopolitan diatom species, the centric Chaetoceros debilis and the pennate Pseudo-nitzschia lineola, increased population density exponentially throughout the experiment to 150-fold and 90-fold of initial values respectively. Because C. debilis initial abundance was tenfold lower than that of P. lineola, the two contributed 1 % and 21 % to bloom biomass respectively at the end of the experiment, high-lighting the role of seeding in bloom formation. The other significant species increased population size at a linear rate throughout the experiment or for a short spurt phase to 3 to 18-fold of initial values. Conservative estimates of mortality rates within diatom species populations were obtained by comparing net accumulation rates of full cells with those of empty and broken frustules. The ratios were consistent over time for the various species but varied widely between them. The species-specific variation can be explained by differences in both growth and mortality rates, the latter partly due to either selective grazing or avoidance by the large protozoo- and metazooplankton populations present. Selective predation by the abundant copepod populations on protistan grazers (ciliates and heterotrophic dinoflagellates) of diatoms apparently aided diatom biomass build-up. The response patterns of populations of the phytoplankton species present fall into 6 categories comprising disparate species, indicating that phylogeny is a poor predictor of ecology. The group that did not respond to fertilization was the most diverse and included both endemic and cosmopolitan as well as background and bloom-forming species. This lack of response to the advent of favorable growth conditions indicates that proximate factors during EisenEx triggered growth only in some species but had little effect on others. We attribute the differences in behavior to ultimate factors such as seasonal effects on life cycles and other internal constraints on growth rates. The implications for our understanding of the evolutionary ecology of phytoplankton and its impact on global biogeochemical cycles are pointed out.
    Keywords: ANT-XVIII/2; CTD/Rosette; CTD117; CTD123; CTD126; CTD128; CTD145; CTD149; CTD16; CTD18; CTD45; CTD51; CTD54; CTD57; CTD61; CTD66; CTD70; CTD74; CTD88; CTD9; CTD-RO; EisenEx; European Iron Enrichment Experiment in the Southern Ocean; Polarstern; PS58/009-2; PS58/011-3; PS58/012-5; PS58/014-4; PS58/038-3; PS58/041-2; PS58/042-2; PS58/043-2; PS58/045-2; PS58/046-3; PS58/048-3; PS58/049-3; PS58/061-3; PS58/088-4; PS58/090-4; PS58/091-4; PS58/092-3; PS58/107-5; PS58/108-1; PS58 EISENEX; South Atlantic
    Type: Dataset
    Format: application/zip, 95 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Henjes, Joachim; Assmy, Philipp; Klaas, Christine; Smetacek, Victor (2007): Response of the larger protozooplankton to an iron-induced phytoplankton bloom in the Polar Frontal Zone of the Southern Ocean (EisenEx). Deep Sea Research Part I: Oceanographic Research Papers, 54(5), 774-791, https://doi.org/10.1016/j.dsr.2007.02.005
    Publication Date: 2024-06-25
    Description: The responses of larger (〉50 µm in diameter) protozooplankton groups to a phytoplankton bloom induced by in situ iron fertilization (EisenEx) in the Polar Frontal Zone (PFZ) of the Southern Ocean in austral spring are presented. During the 21 days of the experiment, samples were collected from seven discrete depths in the upper 150 m inside and outside the fertilized patch for the enumeration of acantharia, foraminifera, radiolaria, heliozoa, tintinnid ciliates and aplastidic thecate dinoflagellates. Inside the patch, acantharian numbers increased twofold, but only negligibly in surrounding waters. This finding is of major interest, since acantharia are suggested to be involved in the formation of barite (BaSO_4 ) found in sediments and which is a palaeoindicator of both ancient and modern high productivity regimes. Foraminifera increased significantly in abundance inside and outside the fertilized patch. However the marked increase of juveniles after a full moon event suggests a lunar periodicity in the reproduction cycle of some foraminiferan species rather than a reproductive response to enhanced food availability. In contrast, adult radiolaria showed no clear trend during the experiment, but juveniles increased threefold indicating elevated reproduction. Aplastidic thecate dinoflagellates almost doubled in numbers and biomass, but also increased outside the patch. Tintinnid numbers decreased twofold, although biomass remained constant due to a shift in the size spectrum. Empty tintinnid loricae, however, increased by a factor of two indicating that grazing pressure on this group mainly by copepods intensified during EisenEx. The results show that iron-fertilization experiments can shed light on the biology and the role of these larger protists in pelagic ecosystem which will improve their use as proxies in palaeoceanography.
    Keywords: ANT-XVIII/2; CTD/Rosette; CTD11; CTD118; CTD121; CTD125; CTD130; CTD146; CTD15; CTD150; CTD19; CTD47; CTD52; CTD55; CTD58; CTD64; CTD67; CTD71; CTD75; CTD88; CTD-RO; EisenEx; European Iron Enrichment Experiment in the Southern Ocean; Polarstern; PS58/009-6; PS58/011-3; PS58/012-4; PS58/014-6; PS58/038-7; PS58/041-5; PS58/042-5; PS58/043-4; PS58/045-9; PS58/046-5; PS58/048-5; PS58/049-5; PS58/061-3; PS58/088-7; PS58/090-2; PS58/091-3; PS58/092-6; PS58/107-6; PS58/108-3; PS58 EISENEX; South Atlantic
    Type: Dataset
    Format: application/zip, 38 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Henjes, Joachim; Assmy, Philipp; Klaas, Christine; Verity, Peter; Smetacek, Victor (2007): Response of microzooplankton (protists and small copepods) to an iron-induced phytoplankton bloom in the Southern Ocean (EisenEx). Deep Sea Research Part I: Oceanographic Research Papers, 54(3), 363-384, https://doi.org/10.1016/j.dsr.2006.12.004
    Publication Date: 2024-06-25
    Description: The dynamics, composition and grazing impact of microzooplankton were studied during the in situ iron fertilisation experiment EisenEx in the Antarctic Polar Frontal Zone in austral spring (November 2000). During the 21 day experiment, protozooplankton and small metazooplankton were sampled from the mixed layer inside and outside the patch using Niskin bottles. Aplastidic dinoflagellates increased threefold in abundance and biomass in the first 10 d of the experiment, but decreased thereafter to values twofold higher than pre-fertilisation values. The decline after day 10 is attributed to increasing grazing pressure by copepods. They also constrained ciliate abundances and biomass which were higher inside the fertilised patch than outside but highly variable. Copepod nauplii abundance also remained stable whereas biomass doubled. Numbers of copepodites and adults of small copepod species increased threefold inside the patch, but doubled in surrounding waters. Grazing rates estimated using the dilution method suggest that microzooplankton grazing constrained pico- and nanoplankton populations, but species capable of feeding on large diatoms (dinoflagellates and small copepods including possibly nauplii) were selectively predated by the metazoan community. Thus, iron fertilisation of a developing spring phytoplankton assemblage resulted in a trophic cascade which favoured dominance of the bloom by large diatoms.
    Keywords: ANT-XVIII/2; CTD/Rosette; CTD117; CTD123; CTD126; CTD128; CTD145; CTD149; CTD16; CTD18; CTD45; CTD51; CTD54; CTD57; CTD61; CTD66; CTD70; CTD74; CTD87; CTD9; CTD-RO; EisenEx; European Iron Enrichment Experiment in the Southern Ocean; Polarstern; PS58/009-2; PS58/011-1; PS58/012-5; PS58/014-4; PS58/038-3; PS58/041-2; PS58/042-2; PS58/043-2; PS58/045-2; PS58/046-3; PS58/048-3; PS58/049-3; PS58/061-1; PS58/088-4; PS58/090-4; PS58/091-4; PS58/092-3; PS58/107-5; PS58/108-1; PS58 EISENEX; South Atlantic
    Type: Dataset
    Format: application/zip, 38 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Esper, Oliver; Zonneveld, Karin A F (2007): The potential of organic-walled dinoflagellate cysts for the reconstruction of past sea-surface conditions in the Southern Ocean. Marine Micropaleontology, 65(3-4), 185-212, https://doi.org/10.1016/j.marmicro.2007.07.002
    Publication Date: 2024-06-25
    Description: In this study we investigate the potential of organic-walled dinoflagellate cysts (dinocysts) as tools for quantifying past sea-surface temperatures (SST) in the Southern Ocean. For this purpose, a dinocyst reference dataset has been formed, based on 138 surface sediment samples from different circum-Antarctic environments. The dinocyst assemblages of these samples are composed of phototrophic (gonyaulacoid) and heterotrophic (protoperidinioid) species that provide a broad spectrum of palaeoenvironmental information. The relationship between the environmental parameters in the upper water column and the dinocyst distribution patterns of individual species has been established using the statistical method of Canonical Correspondence Analysis (CCA). Among the variables tested, summer SST appeared to correspond to the maximum variance represented in the dataset. To establish quantitative summer SST reconstructions, a Modern Analogue Technique (MAT) has been performed on data from three Late Quaternary dinocyst records recovered from locations adjacent to prominent oceanic fronts in the Atlantic sector of the Southern Ocean. These dinocyst time series exhibit periodic changes in the dinocyst assemblage during the last two glacial/interglacial-cycles. During glacial conditions the relative abundance of protoperidinioid cysts was highest, whereas interglacial conditions are characterised by generally lower cyst concentrations and increased relative abundance of gonyaulacoid cysts. The MAT palaeotemperature estimates show trends in summer SST changes following the global oxygen isotope signal and a strong correlation with past temperatures of the last 140,000 years based on other proxies. However, by comparing the dinocyst results to quantitative estimates of summer SSTs based on diatoms, radiolarians and foraminifer-derived stable isotope records it can be shown that in several core intervals the dinocyst-based summer SSTs appeared to be extremely high. In these intervals the dinocyst record seems to be highly influenced by selective degradation, leading to unusual temperature ranges and to unrealistic palaeotemperatures. We used the selective degradation index (kt-index) to determine those intervals that have been biased by selective degradation in order to correct the palaeotemperature estimates. We show that after correction the dinocyst based SSTs correspond reasonably well with other palaeotemperature estimates for this region, supporting the great potential of dinoflagellate cysts as a basis for quantitative palaeoenvironmental studies.
    Keywords: Agulhas Basin; ANT-IV/4; ANT-IX/4; ANT-VI/3; ANT-VIII/3; ANT-X/4; ANT-X/6; ANT-XVIII/5a; APSARA4; Atlantic Indik Ridge; AWI_Paleo; BC; Bounty Trough, Southwest Pacific; Box corer; Brazil Basin; Cape Basin; Central South Atlantic; ELT27; ELT27.030-PC; ELT29; ELT29.001-PC; ELT29.002-PC; ELT29.070-PC; ELT34; ELT34.006-PC; ELT34.007-PC; ELT34.009-PC; ELT34.011-PC; ELT36; ELT36.023-PC; ELT36.025-TC; ELT36.027-PC; ELT36.043-PC; ELT43; ELT43.005-PC; ELT44; ELT44.005-PC; ELT44.006-PC; ELT53; ELT53.022-PC; ELT53.023-PC; ELT53.025-PC; ELT55; ELT55.001-PC; ELT55.002-PC; ELT55.003-PC; ELT55.004-PC; ELT55.005-PC; ELT55.006-PC; ELT55.007-PC; ELT55.008-PC; ELT55.009-PC; ELT55.010-PC; Eltanin; GC; GeoB2001-1; GeoB2007-1; GeoB2008-1; GeoB2009-1; GeoB2011-1; GeoB2018-1; GeoB2019-2; GeoB2021-4; GeoB2022-3; GeoB3601-1; GeoB3602-2; GeoB3603-1; GeoB3604-4; GeoB3605-1; GeoB3809-1; GeoB3810-2; GeoB3812-2; GeoB6407-2; GeoB6409-2; GeoB6413-4; GeoB6414-1; GeoB6416-2; GeoB6417-2; GeoB6418-3; GeoB6419-2; GeoB6421-1; GeoB6422-5; GeoB6423-2; GeoB6425-1; GeoB6427-1; GeoB6429-1; Giant box corer; GKG; Gravity corer; Gravity corer (Kiel type); Indian Ocean; KAL; Kasten corer; KC029; KC032; KC046; KC064; KC073; KC075; KC078; KC081; KC083; KC084; KC090; KC095; KC098; KC100; KR88-01; KR88-02; KR88-03; KR88-04; KR88-07; KR88-08; KR88-09; KR88-13; KR88-15; KR88-16; KR88-18; KR88-25; KR88-29; KR88-30; M23/1; M34/1; M34/3; M46/4; Marion Dufresne (1972); Maud Rise; MD94-02; MD94-04; MD94-06; MD94-07; Meteor (1986); Meteor Rise; MIC; Mid Atlantic Ridge; MiniCorer; MUC; MultiCorer; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; PC; Piston corer; Polarstern; PS08; PS08/621; PS12; PS12/284; PS12/549; PS12/551; PS12/557; PS1459-4; PS1585-1; PS16; PS16/284; PS16/311; PS1650-1; PS1651-2; PS1654-1; PS1756-5; PS1768-8; PS18; PS18/238; PS2082-1; PS21 06AQANTX_4; PS22; PS22/899; PS22/902; PS22/947; PS22/973; PS2230-1; PS2366-1; PS2367-1; PS2372-1; PS2376-2; PS58; PS58/251-1; PS58/254-2; PS58/256-1; PS58/258-1; PS58/265-1; PS58/266-4; PS58/267-4; PS58/268-1; PS58/269-4; PS58/270-1; PS58/272-4; PS58/274-4; PS58/276-1; PS58/280-1; PS58/290-1; PS58/291-3; PS58/292-1; Q215; Q219; Q575; Q861; R657; S924; Shona Ridge; SL; South African margin; South Atlantic; South Atlantic Ocean; Southeast Pacific; Southern Cape Basin; South Pacific; South Pacific Ocean; TAS_67GC01; TAS_67GC18; TAS_67GC44; TAS_67GC45; TAS_67GC46; TAS_67GC47; TAS_67GC49; TAS_67GC50; TAS_67GC51; TAS_67PC02; TAS_67PC03; TAS_67PC04; U938; U950
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...