ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Stromboli  (13)
  • 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes  (8)
  • American Geophysical Union  (21)
  • American Institute of Physics
  • 2005-2009  (21)
  • 2000-2004
Collection
Years
Year
  • 1
    Publication Date: 2023-01-16
    Description: The 5 April 2003 eruption of Stromboli volcano (Italy) was the most violent in the past 50 years. It was also the best documented due to the accurate geophysical monitoring of the ongoing effusive eruption. Detailed field studies carried out a few hours to a few months after the event provided further information that were coupled with visual documentation to reconstruct the explosive dynamics. The eruption consisted of an 8-min-long explosive event preceded by a short-lived precursory activity that evolved into the impulsive ejection of gas and pyroclasts. Meter-sized ballistic blocks were launched to altitudes of up to 1400 m above the craters falling on the volcano flanks and on the village of Ginostra, about 2 km far from the vent. The vertical jet of gas and pyroclasts above the craters fed a convective plume that reached a height of 4 km. The calculated erupted mass yielded values of 1.1–1.4 × 108 kg. Later explosions generated a scoria flow deposit, with an estimated mass of 1.0–1.3 × 107 kg. Final, waning ash explosions closet the event. The juvenile fraction consisted of an almost aphyric, highly vesicular pumice mingled with a shallow-derived, crystal-rich, moderately vesicular scoria. Resuming of the lava emission a few hours after the paroxysm indicate that the shallow magmatic system was not significantly modified during the explosions. Combination of volume data with duration of eruptive phases allowed us to estimate the eruptive intensity: during the climactic explosive event, the mass discharge rate was between 106 and 107 kg/s, whereas during the pyroclastic flow activity, it was 2.8–3.6 × 105 kg/s. Strong similarities with other historical paroxysms at Stromboli suggest similar explosion dynamics.
    Description: Unpublished
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: open
    Keywords: Stromboli ; paroxysm ; explosive dynamics ; pyroclastic deposits ; ballistic ejecta ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-14
    Description: From 25 November to 2 December 2006, the first active seismic tomography experiment at Stromboli volcano was carried out with the cooperation of four Italian research institutions. Researchers on board the R/V Urania of the Italian National Council of Research (CNR), which was equipped with a battery of four 210- cubic- inch generated injection air guns (GI guns), fired more than 1500 offshore shots along profiles and rings around the volcano.
    Description: DPC/INGV agreement 2004-2006
    Description: Published
    Description: 269-270
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: N/A or not JCR
    Description: reserved
    Keywords: Stromboli ; seismic tomography ; air-gun ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-14
    Description: A major step in the "Wilson Cycle" is the splitting of a continent and the birth of a new ocean, with the consequent formation of passive plate margins. The transition from a continental to an oceanic rift can be observed today nowhere better than in the Red Sea/Gulf of Aden system. We have carried out during several years a number of expeditions in the axial portion of the Northern Red Sea, in the region where the northernmost nuclei of axial emplacement of oceanic crust can be observed. High resolution multibeam, magnetics, gravity and multichannel seismic reflection surveys from the Thetis Deep revealed rates and modes of initial pulses of sea floor spreading, velocity of S to N axial propagation of the oceanic rift, evolution of initial MORB-type crust and nature of the mantle thermal anomaly that caused the transition from a continental to an oceanic rift. The Thetis deep is made of three en echelon fault-bounded axial basins that are joined together with axial volcanic ridges and a large number of scattered small central volcanoes. The southern basin shows a strong linear magnetic anomaly corresponding to the axial neo-volcanic zone. Two negative symmetric anomalies identified as Matuyama are present in the southernmost part of this basin, suggesting that the emplacement of oceanic crust at this site started roughly 2.5 Ma, with an average half spreading rate of 6 mm/yr. The central sub-basin is also characterized by a strongly magnetic linear neo- volcanic zone that, however, is flanked only by a small, "vanishing" symmetrical negative anomaly suggesting emplacement of oceanic crust not earlier than about 1 Ma. The northern sub-basin does not show a clearly defined linear neo-volcanic zone although it displays a strong central magnetization suggesting initial emplacement of oceanic crust 〈 0.7 Ma. This pattern implies a south to north time progression of the initial emplacement of oceanic crust within the Thetis system, with a propagation rate of about 20 mm/yr. Gravity data inversions constrained by seismic data reveal that the oceanic crust extends from the axial neo-volcanic ridges toward the master faults of the axial depression with crustal thickness ranging from 4 to 6 km. The increasing thickness of basaltic crust toward the edges of the basin together with higher degree of melting, inferred by the geochemistry of the basaltic glasses, and higher central magnetization of the northernmost and youngest basin suggest a pulse of faster spreading rate at the onset of sea-floor spreading.
    Description: Published
    Description: San Francisco
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: Spatial variations attributed to seafloor spreading ; Oceanic crust ; Seafloor morphology, geology, and geophysics ; Mid-ocean ridges ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-24
    Description: Stromboli’s 5 April 2003 explosion sent an ash plume to 4 km and blocks to 2 km, representing one of the most powerful events over the last 100 years. A thermal sensor 450 m east of the vent and a helicopter-flown thermal camera captured the event dynamics allowing detailed reconstruction. This review links previous studies providing a complete collation and clarification of the actual event chronology, while showing how relatively inexpensive thermal sensors can be used to provide great insight into processes that cannot be observed from locations outside of the eruption cloud. The eruption progressed through four phases, comprised 29 discrete explosions and lasted 373 s. The opening phase (phase 1) comprised ~30 s of precursory ash emission, with stronger emission beginning after 17 s. This was abruptly terminated by the main blast of phase 2 which comprised emission of a rapidly expanding ash cloud followed, after 0.4 s, by a powerful jet with velocities of up to 320 m/s. A second explosive phase (phase 3) began 38 s later and involved ascent of a phoenix cloud and explosive emission above a lateral vent lasting 75 s. This was followed by a 175-s-long phase of weaker, pulsed emission. The eruption was terminated by a series of three explosions (phase 4) sending ash to ~600 m at velocities of 27-45 m/s and lasting 87 s. Together these results have shown that a low energy opening phase was followed by the highest energy phase. Each phase itself comprised groups of discrete explosions, with energy of the explosions diminishing during the two final phases.
    Description: Published
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: open
    Keywords: Thermal imaging ; Stromboli ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-24
    Description: Regular surveys with a PM695 FLIR thermal imaging camera from both the ground and from helicopter were conducted on Stromboli from October 2001. These measurements allow us to (i) examine changes in morphology of the summit craters produced by paroxystic explosions and (ii) track the increasing level of magma within the conduits of Stromboli that preceded and led to the 2002/03 effusive eruption. Two geophysical surveys in May and September/October 2002 demonstrated a clear increasing trend in the amplitude of VLP events, consistent with the presence of a higher magma column above the VLP source region. The observed increase in magma level was probably induced by an increase in the pressure of the magma feeding system at Stromboli, controlled by regional tectonic stress. The increased magma level induced strain on the uppermost part of the crater terrace, allowing an increase in soil permeability and therefore CO2 and Radon degassing. Eventually this stress caused the northeast flank of the craters to fracture, allowing lava to flood out at high effusion rates on 28th December. Regular surveys with the thermal imaging camera, combined with geophysical monitoring, are an invaluable addition to the armory of volcanologists attempting to follow the evolution of activity on active volcanoes.
    Description: Published
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: open
    Keywords: Thermal imaging ; Stromboli ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-24
    Description: At 18:20 of 28 December 2002 an eruptive vent opened on the NE flank of the Sciara del Fuoco at 600 m asl, marking the onset of the 2002-2003 eruptive crisis of Stromboli volcano. The first eruptive hours were characterized by mild spattering and effusive activity from the new vent and the summit vent at crater 1. Gravitational instability processes also determined the partial collapse of NE walls of the summit cone (crater 1). Pyroclastic material partly accumulated on the NE part of the Sciara, and partly flowed down slope and reached the sea at Spiaggia dei Gabbiani forming a ~ 4m-thick, reddish avalanche, that was soon covered by a lava flow emitted in the following hours (Lodato et al., 2007). In this paper, we describe the first hours of activity trough eyewitnesses’ reports, geophysical monitoring, field and laboratory studies and of the erupted pyroclastic material and lava flows. Daily temperature measurements were carried out on the avalanche deposit formed by the flow of scoria along the Sciara, using a handheld thermal camera mainly during helicopter surveys. A fast cooling rate was typical of the deposit surface, and a slow cooling rate was representative of its inner portion.
    Description: Published
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: open
    Keywords: Thermal imaging ; Stromboli ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The active tectonics at the front of the Southern Apennines and in the Adriatic foreland is characterized by E-W striking, right-lateral seismogenic faults, interpreted as reactivated inherited discontinuities. The best studied among these is the Molise-Gondola shear zone (MGsz). The interaction of these shear zones with the Apennines chain is not yet clear. To address this open question we developed a set of scaled analogue experiments, aimed at analyzing: 1) how dextral strike-slip motion along a pre-existing zone of weakness within the foreland propagates toward the surface and affects the orogenic wedge; 2) the propagation of deformation as a function of displacement; 3) any insights on the active tectonics of Southern Italy. Our results stress the primary role played by these inherited structures when reactivated, and confirm that regional E-W dextral shear zones are a plausible way of explaining the seismotectonic setting of the external areas of the Southern Apennines.
    Description: INGV, Università degli Studi di Pavia
    Description: Published
    Description: 21
    Description: open
    Keywords: Active strike-slip fault ; sandbox model ; southern Italy ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 5190977 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Stromboli is a 3000-m-high, conical island-arc volcano rising to 900 m above sea level. It is the most active volcano of the Aeolian Archipelago in the Tyrrhenian Sea (Italy). In the last 13 Kr four large-volume (1 km3) flank collapses have played an important role in shaping the northwestern flank (Sciara del Fuoco- SdF) of the volcano. These flank collapses have the potential to cause hazardous tsunamis in the Aeolian islands and farther afield along the Italian coast. In addition, smaller volume, much more frequent partial collapses of the SdF have been shown to be tsunami generating, potentially hazardous events One such partial collapse occurred on 30/12/2002, on the north-western flank of the island. The resulting landslide generated a 10-m-high tsunami that impacted the island. Multibeam bathymetry, side-scan sonar and seabed visual observations reveal that 25-30 x 106 m3 of sediments were deposited on the offshore from the Sciara del Fuoco landslide. Sediment samples have led to the recognition of a proximal coarse-grained landslide deposit on the volcano slope and a distal, cogenetic, sandy turbidite 24 km from the Stromboli shoreline. The proximal landslide deposit consists of two contiguous facies: (1) a chaotic, coarse grained (meter- to centimetre-sized clasts) deposit and (2) a sand deposit containing a lower, cross bedded sand layer and an upper structureless, pebbly sand bed, capped by seafloor ripple bedforms. The ubiquitous sand facies develops laterally with and over the coarse-grained deposits. Distally, a capping 2-3 cm-thick sand layer, not present in a pre-landslide September 2002 core, is interpreted as the finer grained turbidite equivalent of the proximal deposits. Characteristics of the SdF landslide deposits suggest that they derive from cohesionless, sandy-matrix, density flows. Flow rheology resulted in segregation of the density flow into sand-rich and clast-rich regions. Our results show that a range of density flow transitions, based principally on particle concentration and grain-size partitioning of cohesionless parent flows, can be identified in the proximal and distaldeposits of this relatively small-scale landslide event on Stromboli.
    Description: Unpublished
    Description: 23
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: open
    Keywords: Stromboli ; flank collapse ; tsunami ; submarine landslide deposits ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Combining tectonics, with seismological and geochemical data, we reconstruct the deformation history of the presently narrow Calabrian slab and the path of mantle circulation during the last 10 Ma. We show that during the slab deformation the mantle laterally flowed inside the back arc region permitting its retrograde motion and giving a seismological and volcanological record after 1–2 myr.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: mantle circulation ; Calabrian slab ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 458 bytes
    Format: 255992 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2017-04-04
    Description: Explosion-quake seismograms recorded at Stromboli show that seismic phases with a high-amplitude and high-frequency content propagate with a velocity of approximately 330 m/s - the sound speed. The analysis of seismograms, recorded at a distance of 500 m from one of the three active vents, shows for the first onset a low frequency and particle motion characteristics of a p-wave, which loses its longitudinal polarization with the onset of the air-wave. Recording the explosion-quake simultaneously with a microphonewe would ascertain that the high frequency onset coincides with the air-wave's. In order to better understand the seismic wavefield generated by the atmospheric pressure, we performed a controlled source experiment at Stromboli using a seismic gun. Seismograms with the same two phases and particle motions comparable with the volcanic seismic data were obtained. A second experiment demonstrated, that the air-wave propagates at least in the uppermost 1m of the gound. We suggest that the seismic source of the corresponding seismograms is an explosion at the top of the magma column and conclude that the p- and air-waves are both generated in the same point and at the same time.
    Description: Published
    Description: 65-68
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: volcano seismology ; Stromboli ; air wave ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...