ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (61,554)
  • Nature Publishing Group
  • 2010-2014  (61,705)
Collection
Years
Year
  • 1
    Publication Date: 2014-09-04
    Description: During glacial periods of the Late Pleistocene, an abundance of proxy data demonstrates the existence of large and repeated millennial-scale warming episodes, known as Dansgaard–Oeschger (DO) events1. This ubiquitous feature of rapid glacial climate change can be extended back as far as 800,000 years before present (BP) in the ice core record2, and has drawn broad attention within the science and policy-making communities alike3. Many studies have been dedicated to investigating the underlying causes of these changes, but no coherent mechanism has yet been identified3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15. Here we show, by using a comprehensive fully coupled model16, that gradual changes in the height of the Northern Hemisphere ice sheets (NHISs) can alter the coupled atmosphere–ocean system and cause rapid glacial climate shifts closely resembling DO events. The simulated global climate responses—including abrupt warming in the North Atlantic, a northward shift of the tropical rainbelts, and Southern Hemisphere cooling related to the bipolar seesaw—are generally consistent with empirical evidence1, 3, 17. As a result of the coexistence of two glacial ocean circulation states at intermediate heights of the ice sheets, minor changes in the height of the NHISs and the amount of atmospheric CO2 can trigger the rapid climate transitions via a local positive atmosphere–ocean–sea-ice feedback in the North Atlantic. Our results, although based on a single model, thus provide a coherent concept for understanding the recorded millennial-scale variability and abrupt climate changes in the coupled atmosphere–ocean system, as well as their linkages to the volume of the intermediate ice sheets during glacials.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-17
    Description: Interior Antarctica is among the most remote places on Earth and was thought to be beyond the reach of human impacts when Amundsen and Scott raced to the South Pole in 1911. Here we show detailed measurements from an extensive array of 16 ice cores quantifying substantial toxic heavy metal lead pollution at South Pole and throughout Antarctica by 1889 – beating polar explorers by more than 22 years. Unlike the Arctic where lead pollution peaked in the 1970s, lead pollution in Antarctica was as high in the early 20th century as at any time since industrialization. The similar timing and magnitude of changes in lead deposition across Antarctica, as well as the characteristic isotopic signature of Broken Hill lead found throughout the continent, suggest that this single emission source in southern Australia was responsible for the introduction of lead pollution into Antarctica at the end of the 19th century and remains a significant source today. An estimated 660 t of industrial lead have been deposited over Antarctica during the past 130 years as a result of mid-latitude industrial emissions, with regional-to-global scale circulation likely modulating aerosol concentrations. Despite abatement efforts, significant lead pollution in Antarctica persists into the 21st century.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-24
    Description: Geophysical evidence suggests that fluids along fault planes have an important role in generating earthquakes; however, the nature of these fluids has not been well defined. The 2011 magnitude 9.0 Tohoku-Oki earthquake ruptured the interface between the subducting Pacific plate and the overlying Okhotsk plate. Here we report a sharp increase in mantle-derived helium in bottom seawater near the rupture zone 1 month after the earthquake. The timing and location indicate that fluids were released from the mantle on the seafloor along the plate interface. The movement of the fluids was rapid, with a velocity of ~4 km per day and an uncertainty factor of four. This rate is much faster than what would be expected from pressure-gradient propagation, suggesting that over-pressurized fluid is discharged along the plate interface.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-11-09
    Description: The origin of novel phenotypic characters is a key component in organismal diversification; yet, the mechanisms underlying the emergence of such evolutionary novelties are largely unknown. Here we examine the origin of egg-spots, an evolutionary innovation of the most species-rich group of cichlids, the haplochromines, where these conspicuous male fin colour markings are involved in mating. Applying a combination of RNAseq, comparative genomics and functional experiments, we identify two novel pigmentation genes, fhl2a and fhl2b, and show that especially the more rapidly evolving b-paralog is associated with egg-spot formation. We further find that egg-spot bearing haplochromines, but not other cichlids, feature a transposable element in the cis-regulatory region of fhl2b. Using transgenic zebrafish, we finally demonstrate that this region shows specific enhancer activities in iridophores, a type of pigment cells found in egg-spots, suggesting that a cis-regulatory change is causally linked to the gain of expression in egg-spot bearing haplochromines
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-03-09
    Description: Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2− and PO43− are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the futur
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Geoscience, 7 . pp. 879-884.
    Publication Date: 2017-02-20
    Description: The exchange of water masses across the Antarctic continental shelf break regulates the export of dense shelf waters to depth as well as the transport of warm, mid-depth waters towards ice shelves and glacial grounding lines1. The penetration of the warmer mid-depth waters past the shelf break has been implicated in the pronounced loss of ice shelf mass over much of west Antarctica2, 3, 4. In high-resolution, regional circulation models, the Antarctic shelf break hosts an energetic mesoscale eddy field5, 6, but observations that capture this mesoscale variability have been limited. Here we show, using hydrographic data collected from ocean gliders, that eddy-induced transport is a primary contributor to mass and property fluxes across the slope. Measurements along ten cross-shelf hydrographic sections show a complex velocity structure and a stratification consistent with an onshore eddy mass flux. We show that the eddy transport and the surface wind-driven transport make comparable contributions to the total overturning circulation. Eddy-induced transport is concentrated in the warm, intermediate layers away from frictional boundaries. We conclude that understanding mesoscale dynamics will be critical for constraining circumpolar heat fluxes and future rates of retreat of Antarctic ice shelves.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-04-03
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-03
    Description: Between 1965 and 1990, the waters of the Nordic Seas and the subpolar basins of the North Atlantic Ocean freshened substantially1. The Arctic Ocean also became less saline over this time, as a consequence of increasing runoff1, 2, 3, 4, but it is not clear whether flow from the Arctic Ocean was the main source of the Nordic Seas salinity anomaly. As a region of deep-water formation, the Nordic Seas are central to the Atlantic meridional overturning circulation, but this process is inhibited if the surface salinity is too low2. Here we use the instrumental record of Nordic Seas hydrography, along with a global ocean–sea-ice model hindcast simulation, to identify the sources and magnitude of freshwater that has accumulated in the Nordic Seas since 1950. We find that the freshwater anomalies within the Nordic Seas can mostly be explained by less salt entering the southern part of the basin with the relatively saline Atlantic inflow, with seemingly little contribution from the Arctic Ocean. We conclude that hydrographic changes in the Nordic Seas are primarily related to changes in the Atlantic Ocean. We infer that if the Atlantic inflow and Nordic Seas both freshen similarly, this would render the Atlantic meridional overturning circulation relatively insensitive to Nordic Seas freshwater content.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-07-24
    Description: Large earthquakes on mid-ocean ridge transform faults are commonly preceded by foreshocks1, 2, 3 and changes in the seismic properties of the fault zone3. These seismic precursors could be linked to fluid-related processes2, 3. Hydrothermal fluids within young, hot crust near the intersection of oceanic transform faults are probably in a supercritical condition4. At constant temperature, supercritical fluids become significantly more compressible with decreasing pressure, with potential impacts on fault behaviour. Here we use a theoretical model to show that oceanic transform faults can switch from dilatant and progressive deformation to rupture in response to fluid-related processes. We assume that the fault core material behaves according to a Cam-clay-type5 constitutive law, which is commonly used to account for the behaviour of clays. According to our model, we find that the fault is initially stable, with stresses gradually increasing over a timescale of years in response to tectonic loading. The fault evolves into a metastable phase, lasting a few days, during which the fault rocks dilate and pore pressures decrease, causing the compressibility of the supercritical fluids to increase. This in turn triggers fault-slip instability that creates foreshock swarms. In the final phase, the fault fails in the mainshock rupture. Our results imply that seismic precursors are caused by changes in fluid pressure which result in variations in fluid compressibility, in response to rock deformation just before rupture.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-02-02
    Description: The ability of coral reefs to engineer complex three-dimensional habitats is central to their success and the rich biodiversity they support. In tropical reefs, encrusting coralline algae bind together substrates and dead coral framework to make continuous reef structures, but beyond the photic zone, the cold-water coral Lophelia pertusa also forms large biogenic reefs, facilitated by skeletal fusion. Skeletal fusion in tropical corals can occur in closely related or juvenile individuals as a result of non-aggressive skeletal overgrowth or allogeneic tissue fusion, but contact reactions in many species result in mortality if there is no ‘self-recognition’ on a broad species level. This study reveals areas of ‘flawless’ skeletal fusion in Lophelia pertusa, potentially facilitated by allogeneic tissue fusion, are identified as having small aragonitic crystals or low levels of crystal organisation, and strong molecular bonding. Regardless of the mechanism, the recognition of ‘self’ between adjacent L. pertusa colonies leads to no observable mortality, facilitates ecosystem engineering and reduces aggression-related energetic expenditure in an environment where energy conservation is crucial. The potential for self-recognition at a species level, and subsequent skeletal fusion in framework-forming cold-water corals is an important first step in understanding their significance as ecological engineers in deep-seas worldwide.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-07-03
    Description: Cultivated bacteria such as actinomycetes are a highly useful source of biomedically important natural products. However, such ‘talented’ producers represent only a minute fraction of the entire, mostly uncultivated, prokaryotic diversity. The uncultured majority is generally perceived as a large, untapped resource of new drug candidates, but so far it is unknown whether taxa containing talented bacteria indeed exist. Here we report the single-cell- and metagenomics-based discovery of such producers. Two phylotypes of the candidate genus ‘Entotheonella’ with genomes of greater than 9 megabases and multiple, distinct biosynthetic gene clusters co-inhabit the chemically and microbially rich marine sponge Theonella swinhoei. Almost all bioactive polyketides and peptides known from this animal were attributed to a single phylotype. ‘Entotheonella’ spp. are widely distributed in sponges and belong to an environmental taxon proposed here as candidate phylum ‘Tectomicrobia’. The pronounced bioactivities and chemical uniqueness of ‘Entotheonella’ compounds provide significant opportunities for ecological studies and drug discovery.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-07-24
    Description: Collectively, marine sediments comprise the largest reservoir of methane on Earth. The flux of methane from the sea bed to the overlying water column is mitigated by the sulphate-dependent anaerobic oxidation of methane by marine microbes within a discrete sedimentary horizon termed the sulphate–methane transition zone. According to conventional isotope systematics, the biological consumption of methane leaves a residue of methane enriched in 13C (refs 1, 2, 3). However, in many instances the methane within sulphate–methane transition zones is depleted in 13C, consistent with the production of methane, and interpreted as evidence for the intertwined anaerobic oxidation and production of methane4, 5, 6. Here, we report results from experiments in which we incubated cultures of microbial methane consumers with methane and low levels of sulphate, and monitored the stable isotope composition of the methane and dissolved inorganic carbon pools over time. Residual methane became progressively enriched in 13C at sulphate concentrations above 0.5 mM, and progressively depleted in 13C below this threshold. We attribute the shift to 13C depletion during the anaerobic oxidation of methane at low sulphate concentrations to the microbially mediated carbon isotope equilibration between methane and carbon dioxide. We suggest that this isotopic effect could help to explain the 13C-depletion of methane in subseafloor sulphate–methane transition zones.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-03-05
    Description: Vitamin B 1 (thiamine pyrophosphate, TPP) is essential to all life but scarce in ocean surface waters. In many bacteria and a few eukaryotic groups thiamine biosynthesis genes are controlled by metabolite-sensing mRNA-based gene regulators known as riboswitches. Using available genome sequences and transcriptomes generated from ecologically important marine phytoplankton, we identified 31 new eukaryotic riboswitches. These were found in alveolate, cryptophyte, haptophyte and rhizarian phytoplankton as well as taxa from two lineages previously known to have riboswitches (green algae and stramenopiles). The predicted secondary structures bear hallmarks of TPP-sensing riboswitches. Surprisingly, most of the identified riboswitches are affiliated with genes of unknown function, rather than characterized thiamine biosynthesis genes. Using qPCR and growth experiments involving two prasinophyte algae, we show that expression of these genes increases significantly under vitamin B 1 -deplete conditions relative to controls. Pathway analyses show that several algae harboring the uncharacterized genes lack one or more enzymes in the known TPP biosynthesis pathway. We demonstrate that one such alga, the major primary producer Emiliania huxleyi, grows on 4-amino-5-hydroxymethyl-2-methylpyrimidine (a thiamine precursor moiety) alone, although long thought dependent on exogenous sources of thiamine. Thus, overall, we have identified riboswitches in major eukaryotic lineages not known to undergo this form of gene regulation. In these phytoplankton groups, riboswitches are often affiliated with widespread thiamine-responsive genes with as yet uncertain roles in TPP pathways. Further, taxa with 'incomplete' TPP biosynthesis pathways do not necessarily require exogenous vitamin B 1, making vitamin control of phytoplankton blooms more complex than the current paradigm suggests. © 2014 International Society for Microbial Ecology. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Scientific Reports, 4 (6972).
    Publication Date: 2017-05-09
    Description: Rhodoliths are coralline red algal assemblages that commonly occur in marine habitats from the tropics to polar latitudes. They form rigid structures of high-magnesium calcite and have a good fossil record. Here I show that rhodoliths are ecosystem engineers in a high Arctic environment that increase local biodiversity by providing habitat. Gouged by boring mussels, originally solid rhodoliths become hollow ecospheres intensely colonised by benthic organisms. In the examined shelf areas, biodiversity in rhodolith-bearing habitats is significantly greater than in habitats without rhodoliths and hollow rhodoliths yield a greater biodiversity than solid ones. This biodiversity, however, is threatened because hollow rhodoliths take a long time to form and are susceptible to global change and anthropogenic impacts such as trawl net fisheries that can destroy hollow rhodoliths. Rhodoliths and other forms of coralline red algae play a key role in a plurality of environments and need improved management and protection plans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-07-17
    Description: Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch1, 2, 3, 4. However, the same thermokarst lakes can also sequester carbon5, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47 ± 10 grams of carbon per square metre per year; mean ± standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160 petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears7, 8, 9, potentially negating the climate stabilization provided by thermokarst lakes during the late Holocene.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-08-10
    Description: The Antarctic Circumpolar Current is key to the mixing and ventilation of the world’s oceans1, 2, 3, 4, 5. This current flows from west to east between about 45° and 70° S (refs 1, 2, 3) connecting the Atlantic, Pacific and Indian oceans, and is driven by westerly winds and buoyancy forcing. High levels of productivity in the current regulate atmospheric CO2 concentrations6. Reconstructions of the current during the last glacial period suggest that flow speeds were faster7 or similar8 to present, and it is uncertain whether the strength and position of the westerly winds changed9, 10, 11. Here we reconstruct Antarctic Circumpolar Current bottom speeds through the constricting Drake Passage and Scotia Sea during the Last Glacial Maximum and Holocene based on the mean grain size of sortable silt from a suite of sediment cores. We find essentially no change in bottom flow speeds through the region, and, given that the momentum imparted by winds, and modulated by sea-ice cover, is balanced by the interaction of these flows with the seabed, this argues against substantial changes in wind stress. However, glacial flow speeds in the sea-ice zone12 south of 56° S were significantly slower than present, whereas flow in the north was faster, but not significantly so. We suggest that slower flow over the rough topography south of 56° S may have reduced diapycnal mixing in this region during the last glacial period, possibly reducing the diapycnal contribution to the Southern Ocean overturning circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-07-14
    Description: During the Middle Miocene climate transition about 14 million years ago, the Antarctic ice sheet expanded to near-modern volume. Surprisingly, this ice sheet growth was accompanied by a warming in the surface waters of the Southern Ocean, whereas a slight deep-water temperature increase was delayed by more than 200 thousand years. Here we use a coupled atmosphere–ocean model to assess the relative effects of changes in atmospheric CO2 concentration and ice sheet growth on regional and global temperatures. In the simulations, changes in the wind field associated with the growth of the ice sheet induce changes in ocean circulation, deep-water formation and sea-ice cover that result in sea surface warming and deep-water cooling in large swaths of the Atlantic and Indian ocean sectors of the Southern Ocean. We interpret these changes as the dominant ocean surface response to a 100-thousand-year phase of massive ice growth in Antarctica. A rise in global annual mean temperatures is also seen in response to increased Antarctic ice surface elevation. In contrast, the longer-term surface and deep-water temperature trends are dominated by changes in atmospheric CO2 concentration. We therefore conclude that the climatic and oceanographic impacts of the Miocene expansion of the Antarctic ice sheet are governed by a complex interplay between wind field, ocean circulation and the sea-ice system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-06-13
    Description: One of the most abrupt and yet unexplained past rises in atmospheric CO2 (〉10 p.p.m.v. in two centuries) occurred in quasi-synchrony with abrupt northern hemispheric warming into the Bølling/Allerød, ~14,600 years ago. Here we use a U/Th-dated record of atmospheric Δ14C from Tahiti corals to provide an independent and precise age control for this CO2 rise. We also use model simulations to show that the release of old (nearly 14C-free) carbon can explain these changes in CO2 and Δ14C. The Δ14C record provides an independent constraint on the amount of carbon released (~125 Pg C). We suggest, in line with observations of atmospheric CH4 and terrigenous biomarkers, that thawing permafrost in high northern latitudes could have been the source of carbon, possibly with contribution from flooding of the Siberian continental shelf during meltwater pulse 1A. Our findings highlight the potential of the permafrost carbon reservoir to modulate abrupt climate changes via greenhouse-gas feedbacks.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-09-23
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 5 (2014): 4102, doi:10.1038/ncomms5102.
    Description: Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ18O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1–2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought.
    Description: Funding was provided by Deutsche Forschungsgemeinschaft (FE 615/4-1), Australian Research Council (Discovery grant DP1094001), Australia and New Zealand IODP Consortium, Australian Institute of Nuclear Science and Engineering, Natural Environmental Research Council (NE/H014136/1, NE/H014268/1), the Cooperative Research Program of the Center for Advanced Marine Core Research (10B039, 11A013, 11B041), Ministry of Earth Sciences, Govt. of India (with partial support from DST & ISRO-GBP) and Japan Society for the Promotion of Science (JSPS NEXT-GR031).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-01-04
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 4 (2014): 4170, doi:10.1038/srep04170.
    Description: Estimating abundance of Antarctic minke whales is central to the International Whaling Commission's conservation and management work and understanding impacts of climate change on polar marine ecosystems. Detecting abundance trends is problematic, in part because minke whales are frequently sighted within Antarctic sea ice where navigational safety concerns prevent ships from surveying. Using icebreaker-supported helicopters, we conducted aerial surveys across a gradient of ice conditions to estimate minke whale density in the Weddell Sea. The surveys revealed substantial numbers of whales inside the sea ice. The Antarctic summer sea ice is undergoing rapid regional change in annual extent, distribution, and length of ice-covered season. These trends, along with substantial interannual variability in ice conditions, affect the proportion of whales available to be counted by traditional shipboard surveys. The strong association between whales and the dynamic, changing sea ice requires reexamination of the power to detect trends in whale abundance or predict ecosystem responses to climate change.
    Description: This work received funding from the following institutions: Alfred Wegener Institute for Polar and Marine Research (AWI); Dutch Ministry of Agriculture, Nature and Food Quality (EL & I); German Federal Ministry of Food, Agriculture and Consumer Protection (BMELV); German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU); the Institute for Marine Resources and Ecosystem Studies (Wageningen IMARES); Johann Heinrich von Thu¨nen Institute (Federal Research Institute for Rural Areas, Forestry and Fisheries); the Netherlands Polar Programme (NPP) of the Netherlands Organisation for Scientific Research (NOW); Research and Technology Centre Westcoast (FTZ) of the University Kiel. RW was funded by a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programme (proposal Nu 253407 (call reference: FP7- PEOPLE-2009-IIF).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-09-29
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 5 (2014): 4274, doi:10.1038/ncomms5274.
    Description: Ecological connections between surface waters and the deep ocean remain poorly studied despite the high biomass of fishes and squids residing at depths beyond the euphotic zone. These animals likely support pelagic food webs containing a suite of predators that include commercially important fishes and marine mammals. Here we deploy pop-up satellite archival transmitting tags on 15 Chilean devil rays (Mobula tarapacana) in the central North Atlantic Ocean, which provide movement patterns of individuals for up to 9 months. Devil rays were considered surface dwellers but our data reveal individuals descending at speeds up to 6.0 m s−1 to depths of almost 2,000 m and water temperatures 〈4 °C. The shape of the dive profiles suggests that the rays are foraging at these depths in deep scattering layers. Our results provide evidence of an important link between predators in the surface ocean and forage species occupying pelagic habitats below the euphotic zone in ocean ecosystems.
    Description: This research was partially supported by the Portuguese Foundation for Science and Technology/Ministry of Education and Science (FCT/MCTES-MEC) through individual support to P.A. (Cieˆncia 2008/POPH/QREN) and J.F. (SFRH/BPD/66532/2009) and the LARSyS Strategic Project (PEst/OE/EEI/LA00009/2011). This study was support by the US National Science Foundation (OCE 0825148 to S.R.T. and G.B.S.), The Harrison Foundation, Rodney and Elizabeth Berens, the King Abdullah University of Science and Technology (baseline research funds to M.L.B.) and the Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Nature Publishing Group
    Publication Date: 2017-01-04
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Climate Change 4 (2014): 862-863, doi:10.1038/nclimate2386.
    Description: Low oxygen levels in tropical oceans shape marine ecosystems and biogeochemistry with climate change expected to expand these regions. Now, a study indicates that regional dynamics control tropical oxygen trends, bucking projected global reductions in ocean oxygen.
    Description: 2015-03-25
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-09-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 4 (2014): 5316, doi:10.1038/srep05316.
    Description: During the propagation of coherent mesoscale eddies, they directly or indirectly induce many effects and interactions at different scales, implying eddies are actually serving as a kind of energy carrier or energy source for these eddy-related dynamic processes. To quantify this dynamically significant energy flow, the multi-year averaged horizontal eddy energy fluxes (EEFs) were estimated by using satellite altimetry data and a two-layer model based on hydrographic climatology. There is a strong net westward transport of eddy energy estimated at the mean value of ~13.3 GW north of 5°N and ~14.6 GW at the band 5°S ~ 44°S in the Southern Hemisphere. However, poleward of 44°S east-propagating eddies carry their energy eastward with an averaged net flux of ~3.2 GW. If confirmed, it would signify that geostrophic eddies not only contain the most of oceanic kinetic energy (KE), but also carry and spread a significant amount of energy with them.
    Description: This study is supported by Grants XDA11010202, 2011CB403505, 2013CB430303; Projects 41306016, U1033002, 40976021 of NNSFC and LTOZZ1304.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-09-23
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in ISME Journal 8 (2014): 1-3, doi:10.1038/ismej.2013.176.
    Description: The need for metadata standards for microbe sampling in the built environment.
    Description: We would like to thank the Alfred P Sloan Foundation grant FP047325-01-PR for support for this project.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-09-26
    Description: © The Author(s), 2014]. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 4 (2014): 6648, doi:10.1038/srep06648.
    Description: Sediments from Tibetan lakes in NW China are potentially sensitive recorders of climate change and its impact on ecosystem function. However, the important plankton members in many Tibetan Lakes do not make and leave microscopically diagnostic features in the sedimentary record. Here we established a taxon-specific molecular approach to specifically identify and quantify sedimentary ancient DNA (sedaDNA) of non-fossilized planktonic organisms preserved in a 5-m sediment core from Kusai Lake spanning the last 3100 years. The reliability of the approach was validated with multiple independent genetic markers. Parallel analyses of the geochemistry of the core and paleo-climate proxies revealed that Monsoon strength-driven changes in nutrient availability, temperature, and salinity as well as orbitally-driven changes in light intensity were all responsible for the observed temporal changes in the abundance of two dominant phytoplankton groups in the lake, Synechococcus (cyanobacteria) and Isochrysis (haptophyte algae). Collectively our data show that global and regional climatic events exhibited a strong influence on the paleoecology of phototrophic plankton in Kusai Lake.
    Description: This research was supported by grants from the National Natural Science Foundation of China (Grant Nos. 41030211 and 41302022), the National Basic Research Program of China (Grant No. 2011CB808800), and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Nos GBL11410 and GBL11201).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-09-23
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 4 (2014): 5024, doi:10.1038/srep05024.
    Description: Climate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces ‘winners’, species that benefit from these events and ‘losers’, species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a ‘reversal of fortunes’ as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change ‘winners’, while Adélie and chinstrap penguins have become climate change ‘losers’.
    Description: We thank the Zoological Society of London, Quark Expeditions, Exodus Travels ltd., Oceanites, the Holly Hill Charitable Trust, the Charities Advisory Trust and an U.S. National Science Foundation (NSF) Office of Polar Programs grant (ANT-0739575) for funding.
    Keywords: Climate-change ecology ; Molecular ecology ; Molecular evolution ; Population genetics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-09-22
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 5 (2014): 4342, doi:10.1038/ncomms5342.
    Description: Three-dimensional (3D) bioimaging, visualization and data analysis are in strong need of powerful 3D exploration techniques. We develop virtual finger (VF) to generate 3D curves, points and regions-of-interest in the 3D space of a volumetric image with a single finger operation, such as a computer mouse stroke, or click or zoom from the 2D-projection plane of an image as visualized with a computer. VF provides efficient methods for acquisition, visualization and analysis of 3D images for roundworm, fruitfly, dragonfly, mouse, rat and human. Specifically, VF enables instant 3D optical zoom-in imaging, 3D free-form optical microsurgery, and 3D visualization and annotation of terabytes of whole-brain image volumes. VF also leads to orders of magnitude better efficiency of automated 3D reconstruction of neurons and similar biostructures over our previous systems. We use VF to generate from images of 1,107 Drosophila GAL4 lines a projectome of a Drosophila brain.
    Description: This work was mainly supported by Howard Hughes Medical Institute. H.P. is currently supported by the Allen Institute for Brain Science. R.W.T. and A.M. were supported by a grant MH071739 (MERIT).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: video/quicktime
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-09-13
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 4 (2014): 5848, doi:10.1038/srep05848.
    Description: Interior Antarctica is among the most remote places on Earth and was thought to be beyond the reach of human impacts when Amundsen and Scott raced to the South Pole in 1911. Here we show detailed measurements from an extensive array of 16 ice cores quantifying substantial toxic heavy metal lead pollution at South Pole and throughout Antarctica by 1889 – beating polar explorers by more than 22 years. Unlike the Arctic where lead pollution peaked in the 1970s, lead pollution in Antarctica was as high in the early 20th century as at any time since industrialization. The similar timing and magnitude of changes in lead deposition across Antarctica, as well as the characteristic isotopic signature of Broken Hill lead found throughout the continent, suggest that this single emission source in southern Australia was responsible for the introduction of lead pollution into Antarctica at the end of the 19th century and remains a significant source today. An estimated 660 t of industrial lead have been deposited over Antarctica during the past 130 years as a result of mid-latitude industrial emissions, with regional-to-global scale circulation likely modulating aerosol concentrations. Despite abatement efforts, significant lead pollution in Antarctica persists into the 21st century.
    Description: This work primarily was supported by the U.S. National Science Foundation Division of Polar Programs (research grants 9903744, 0538427, 0538416, 0968391, 1142166, 0632031; instrument grants 0216552, 0421412).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-excel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-09-23
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 5 (2014): 5385, doi:10.1038/ncomms6385.
    Description: Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4 m per day, and significant emissions of methane and CO2 from the seafloor.
    Description: Participation of the Sentry AUV and TETHYS team from WHOI was funded by the Arctic Research Initiative of WHOI’s Ocean and Climate Change Institute and the NASA ASTEP grant NNX09AB76G. Additional funds were made available by the AWI, the Max Planck Society and the DFG METEOR/MERIAN programme, as well as the Leibniz programme to A.B.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-09-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 4 (2014): 7366, doi:10.1038/srep07366.
    Description: The magnitude of flooding in New York City by Hurricane Sandy is commonly believed to be extremely rare, with estimated return periods near or greater than 1000 years. However, the brevity of tide gauge records result in significant uncertainties when estimating the uniqueness of such an event. Here we compare resultant deposition by Hurricane Sandy to earlier storm-induced flood layers in order to extend records of flooding to the city beyond the instrumental dataset. Inversely modeled storm conditions from grain size trends show that a more compact yet more intense hurricane in 1821 CE probably resulted in a similar storm tide and a significantly larger storm surge. Our results indicate the occurrence of additional flood events like Hurricane Sandy in recent centuries, and highlight the inadequacies of the instrumental record in estimating current flood risk by such extreme events.
    Description: Funding for this work was provided by the Hudson River Foundation Expedited Grant #004/12E, the Hudson River Foundation Graduate Fellowship 02–13, the National Science Foundation (RAPID grant #1313859 and instrument and facility support via grant IF-0949313), and the Dalio Explore Fund.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-10
    Description: Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Hakon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4m per day, and significant emissions of methane and CO2 from the seafloor.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-17
    Description: Complex network approaches have recently been applied to continuous spatial dynamical systems, like climate, successfully uncovering the system's interaction structure. However the relationship between the underlying atmospheric or oceanic flow's dynamics and the estimated network measures have remained largely unclear. We bridge this crucial gap in a bottom-up approach and define a continuous analytical analogue of Pearson correlation networks for advection-diffusion dynamics on a background flow. Analysing complex networks of prototypical flows and from time series data of the equatorial Pacific, we find that our analytical model reproduces the most salient features of these networks and thus provides a general foundation of climate networks. The relationships we obtain between velocity field and network measures show that line-like structures of high betweenness mark transition zones in the flow rather than, as previously thought, the propagation of dynamical information.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-09-23
    Description: In the oceans’ high-nitrate–low-chlorophyll regions, such as the Peru/Humboldt Current system and the adjacent eastern equatorial Pacific1, primary productivity is limited by the micronutrient iron. Within the Peruvian upwelling area, bioavailable iron is released from the reducing continental margin sediments2. The magnitude of this seafloor source could change with fluctuations in the extension or intensity of the oxygen minimum zones3, 4. Here we show that measurements of molybdenum, uranium and iron concentrations can be used as a proxy for sedimentary iron release, and use this proxy to assess iron release from the sea floor beneath the Peru upwelling system during the past 140,000 years. We observe a coupling between levels of denitrification, as indicated by nitrogen isotopes, trace metal proxies for oxygenation, and sedimentary iron concentrations. Specifically, periods with poor upper ocean oxygenation are characterized by more efficient iron retention in the sediment and a diminished iron supply to the water column. We attribute efficient iron retention under more reducing conditions to widespread sulphidic conditions in the surface sediment and concomitant precipitation of iron sulphides. We argue that iron release from continental margin sediments is most effective in a narrow redox window where neither oxygen nor sulphide is present. We therefore suggest that future deoxygenation in the Peru upwelling area would be unlikely to result in increased iron availability, whereas in weaker oxygen minimum zones partial deoxygenation may enhance the iron supply.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Communications, 5 (3304).
    Publication Date: 2019-09-23
    Description: The realization that mitigation efforts to reduce CO2 emissions have, until now, been relatively ineffective has led to an increasing interest in climate engineering as a possible means of preventing potentially catastrophic consequences of climate change. While many studies have addressed the potential effectiveness of individual methods there have been few attempts to compare them. We use an Earth system model to compare the effectiveness and side effects of afforestation, artificial ocean upwelling, ocean iron fertilization, ocean alkalinization, and solar radiation management during a high CO2-emissions scenario. We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (〈8%) warming reductions, or they have severe side effects and cannot be stopped without causing rapid climate change. Our simulations suggest that the potential for these types of climate engineering to make up for failed mitigation may be very limited.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-09-23
    Description: Although ocean warming and acidification are recognized as two major anthropogenic perturbations of today’s oceans we know very little about how marine phytoplankton may respond via evolutionary change. We tested for adaptation to ocean warming in combination with ocean acidification in the globally important phytoplankton species Emiliania huxleyi. Temperature adaptation occurred independently of ocean acidification levels. Growth rates were up to 16% higher in populations adapted for one year to warming when assayed at their upper thermal tolerance limit. Particulate inorganic (PIC) and organic (POC) carbon production was restored to values under present-day ocean conditions, owing to adaptive evolution, and were 101% and 55% higher under combined warming and acidification, respectively, than in non-adapted controls. Cells also evolved to a smaller size while they recovered their initial PIC:POC ratio even under elevated CO2. The observed changes in coccolithophore growth, calcite and biomass production, cell size and elemental composition demonstrate the importance of evolutionary processes for phytoplankton performance in a future ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-09-23
    Description: Assessments of climate sensitivity to projected greenhouse gas concentrations underpin environmental policy decisions, with such assessments often based on model simulations of climate during recent centuries and millennia1, 2, 3. These simulations depend critically on accurate records of past aerosol forcing from global-scale volcanic eruptions, reconstructed from measurements of sulphate deposition in ice cores4, 5, 6. Non-uniform transport and deposition of volcanic fallout mean that multiple records from a wide array of ice cores must be combined to create accurate reconstructions. Here we re-evaluated the record of volcanic sulphate deposition using a much more extensive array of Antarctic ice cores. In our new reconstruction, many additional records have been added and dating of previously published records corrected through precise synchronization to the annually dated West Antarctic Ice Sheet Divide ice core7, improving and extending the record throughout the Common Era. Whereas agreement with existing reconstructions is excellent after 1500, we found a substantially different history of volcanic aerosol deposition before 1500; for example, global aerosol forcing values from some of the largest eruptions (for example, 1257 and 1458) previously were overestimated by 20–30% and others underestimated by 20–50%.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-09-23
    Description: Changes in solar activity have previously been proposed to cause decadal- to millennial-scale fluctuations in both the modern and Holocene climates1. Direct observational records of solar activity, such as sunspot numbers, exist for only the past few hundred years, so solar variability for earlier periods is typically reconstructed from measurements of cosmogenic radionuclides such as 10Be and 14C from ice cores and tree rings2, 3. Here we present a high-resolution 10Be record from the ice core collected from central Greenland by the Greenland Ice Core Project (GRIP). The record spans from 22,500 to 10,000 years ago, and is based on new and compiled data4, 5, 6. Using 14C records7, 8 to control for climate-related influences on 10Be deposition, we reconstruct centennial changes in solar activity. We find that during the Last Glacial Maximum, solar minima correlate with more negative δ18O values of ice and are accompanied by increased snow accumulation and sea-salt input over central Greenland. We suggest that solar minima could have induced changes in the stratosphere that favour the development of high-pressure blocking systems located to the south of Greenland, as has been found in observations and model simulations for recent climate9, 10. We conclude that the mechanism behind solar forcing of regional climate change may have been similar under both modern and Last Glacial Maximum climate conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-09-23
    Description: Large igneous province subduction is a rare process on Earth. A modern example is the subduction of the oceanic Hikurangi Plateau beneath the southern Kermadec arc, offshore New Zealand. This segment of the arc has the largest total lava volume erupted and the highest volcano density of the entire Kermadec arc. Here we show that Kermadec arc lavas south of B32°S have elevated Pb and Sr and low Nd isotope ratios, which argues, together with increasing seafloor depth, forearc retreat and crustal thinning, for initial Hikurangi Plateau—Kermadec arc collision B250 km north of its present position. The combined data set indicates that a much larger portion of the Hikurangi Plateau (the missing Ontong Java Nui piece) than previously believed has already been subducted. Oblique plate convergence caused southward migration of the thickened and buoyant oceanic plateau crust, creating a buoyant ‘Hikurangi’ me´lange beneath the Moho that interacts with ascending arc melts.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Geoscience, 7 (3). pp. 160-161.
    Publication Date: 2019-09-23
    Description: Decadal climate variability has long received limited attention. With the slow-down in surface warming since the late 1990s, the decadal scale has rightly become a focus of attention: for assessing climate change and its impacts, it is of critical importance
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-09-23
    Description: The Agulhas Current (AC) is the strongest western boundary current in the Southern Hemisphere and is key for weather and climate patterns, both regionally and globally. Its heat transfer into both the midlatitude South Indian Ocean and South Atlantic is of global significance. A new composite coral record (Ifaty and Tulear massive Porites corals), is linked to historical AC sea surface temperature (SST) instrumental data, showing robust correlations. The composite coral SST data start in 1660 and comprise 200 years more than the AC instrumental record. Numerical modelling exhibits that this new coral derived SST record is representative for the wider core region of the AC. AC SSTs variabilities show distinct cooling through the Little Ice Age and warming during the late 18th, 19th and 20th century, with significant decadal variability superimposed. Furthermore, the AC SSTs are teleconnected with the broad southern Indian and Atlantic Oceans, showing that the AC system is pivotal for inter-ocean heat exchange south of Africa.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-09-23
    Description: Hydrothermal flow at oceanic spreading centres accounts for about ten per cent of all heat flux in the oceans and controls the thermal structure of young oceanic plates. It also influences ocean and crustal chemistry, provides a basis for chemosynthetic ecosystems, and has formed massive sulphide ore deposits throughout Earth’s history. Despite this, how and under what conditions heat is extracted, in particular from the lower crust, remains largely unclear. Here we present high-resolution, whole-crust, two- and three-dimensional simulations of hydrothermal flow beneath fast-spreading ridges that predict the existence of two interacting flow components, controlled by different physical mechanisms, that merge above the melt lens to feed ridge-centred vent sites. Shallow on-axis flow structures develop owing to the thermodynamic properties of water, whereas deeper off-axis flow is strongly shaped by crustal permeability, particularly the brittle–ductile transition. About 60 per cent of the discharging fluid mass is replenished on-axis by warm (up to 300 degrees Celsius) recharge flow surrounding the hot thermal plumes, and the remaining 40 per cent or so occurs as colder and broader recharge up to several kilometres away from the axis that feeds hot (500–700 degrees Celsius) deep-rooted off-axis flow towards the ridge. Despite its lower contribution to the total mass flux, this deep off-axis flow carries about 70 per cent of the thermal energy released at the ridge axis. This combination of two flow components explains the seismically determined thermal structure of the crust and reconciles previously incompatible models favouring either shallower on-axis or deeper off-axis hydrothermal circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-09-23
    Description: Animal burrowing and sediment-mixing (bioturbation) began during the run up to the Ediacaran/Cambrian boundary1, 2, 3, initiating a transition4, 5 between the stratified Precambrian6 and more well-mixed Phanerozoic7 sedimentary records, against the backdrop of a variable8, 9 global oxygen reservoir probably smaller in size than present10, 11. Phosphorus is the long-term12 limiting nutrient for oxygen production via burial of organic carbon13, and its retention (relative to carbon) within organic matter in marine sediments is enhanced by bioturbation14, 15, 16, 17, 18. Here we explore the biogeochemical implications of a bioturbation-induced organic phosphorus sink in a simple model. We show that increased bioturbation robustly triggers a net decrease in the size of the global oxygen reservoir—the magnitude of which is contingent upon the prescribed difference in carbon to phosphorus ratios between bioturbated and laminated sediments. Bioturbation also reduces steady-state marine phosphate levels, but this effect is offset by the decline in iron-adsorbed phosphate burial that results from a decrease in oxygen concentrations. The introduction of oxygen-sensitive bioturbation to dynamical model runs is sufficient to trigger a negative feedback loop: the intensity of bioturbation is limited by the oxygen decrease it initially causes. The onset of this feedback is consistent with redox variations observed during the early Cambrian rise of bioturbation, leading us to suggest that bioturbation helped to regulate early oxygen and phosphorus cycles.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-09-23
    Description: Stratospheric water vapour is a powerful greenhouse gas. The longest available record from balloon observations over Boulder, Colorado, USA shows increases in stratospheric water vapour concentrations that cannot be fully explained by observed changes in the main drivers, tropical tropopause temperatures and methane. Satellite observations could help resolve the issue, but constructing a reliable long-term data record from individual short satellite records is challenging. Here we present an approach to merge satellite data sets with the help of a chemistry-climate model nudged to observed meteorology. We use the models' water vapour as a transfer function between data sets that overcomes issues arising from instrument drift and short overlap periods. In the lower stratosphere, our water vapour record extends back to 1988 and water vapour concentrations largely follow tropical tropopause temperatures. Lower and mid-stratospheric long-term trends are negative, and the trends from Boulder are shown not to be globally representative. In the upper stratosphere, our record extends back to 1986 and shows positive long-term trends. The altitudinal differences in the trends are explained by methane oxidation together with a strengthened lower-stratospheric and a weakened upper-stratospheric circulation inferred by this analysis. Our results call into question previous estimates of surface radiative forcing based on presumed global long-term increases in water vapour concentrations in the lower stratosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-02-28
    Description: Aluminum wire array z pinches imploded on the Z generator are an extremely bright source of 1–2 keV radiation, with close to 400 kJ radiated at photon energies 〉1 keV and more than 50 kJ radiated in a single line (Al Ly-α). Opacity plays a critical role in the dynamics and K-shell radiation efficiency of these pinches. Where significant structure is present in the stagnated pinch this acts to reduce the effective opacity of the system as demonstrated by direct analysis of spectra. Analysis of time-integrated broadband spectra (0.8–25 keV) indicates electron temperatures ranging from a few 100 eV to a few keV are present, indicative of substantial temperature gradients.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-02-28
    Description: Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids, for instance, for cell disruption or sonochemical reactions. They are operated typically in the frequency range up to about 50 kHz and have tip diameters from some mm to several cm. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e., below the acoustic driving frequency. Here, we present a systematic study of the cavitation dynamics in water at a 20 kHz horn tip of 3 mm diameter. The system was investigated by high-speed imaging with simultaneous recording of the acoustic emissions. Measurements were performed under variation of acoustic power, air saturation, viscosity, surface tension, and temperature of the liquid. Our findings show that the liquid properties play no significant role in the dynamics of the attached cavitation at the small ultrasonic horn. Also the variation of the experimental geometry, within a certain range, did not change the dynamics. We believe that the main two reasons for the peculiar dynamics of cavitation on a small ultrasonic horn are the higher energy density on a small tip and the inability of the big tip to “wash” away the gaseous bubbles. Calculation of the somewhat adapted Strouhal number revealed that, similar to the hydrodynamic cavitation, values which are relatively low characterize slow cavitation structure dynamics. In cases where the cavitation follows the driving frequency this value lies much higher – probably at Str 〉 20. In the spirit to distinguish the observed phenomenon with other cavitation dynamics at ultrasonic transducer surfaces, we suggest to term the observed phenomenon of attached cavities partly covering the full horn tip as “acoustic supercavitation.” This reflects the conjecture that not the sound field in terms of acoustic (negative) pressure in the liquid is responsible for nucleation, but the motion of the transducer surface.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-02-28
    Description: The transport scaling with respect to plasma size and heating power is studied for ion temperature gradient driven turbulence using a fixed-flux full- f gyrokinetic Eulerian code. It is found that when heating power is scaled with plasma size, the ion heat diffusivity increases with plasma size in a local limit regime, where fixed-gradient δ f simulations predict a gyro-Bohm scaling. In the local limit regime, the transport scaling is strongly affected by the stiffness of ion temperature profiles, which is related to the power degradation of confinement.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-02-28
    Description: We use confocal microscopy to directly visualize the formation and complex morphologies of trapped non-wetting fluid ganglia within a model 3D porous medium. The wetting fluid continues to flow around the ganglia after they form; this flow is characterized by a capillary number, Ca . We find that the ganglia configurations do not vary for small Ca ; by contrast, as Ca is increased above a threshold value, the largest ganglia start to become mobilized and are ultimately removed from the medium. By combining our 3D visualization with measurements of the bulk transport, we show that this behavior can be quantitatively understood by balancing the viscous forces exerted on the ganglia with the pore-scale capillary forces that keep them trapped within the medium. Our work thus helps elucidate the fluid dynamics underlying the mobilization of a trapped non-wetting fluid from a 3D porous medium.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-02-28
    Description: An alternative representation of an ideal magnetohydrodynamic equilibrium is developed. The representation is a variation of one given by A. Salat, Phys. Plasmas 2 , 1652 (1995). The system of equations is used to study the possibility of non-symmetric equilibria in a topological torus, here an approximate rectangular parallelopiped, with periodicity in two of the three rectangular coordinates. An expansion is carried out in the deviation of pressure surfaces from planes. Resonances are manifest in the process. Nonetheless, provided the magnetic shear is small, it is shown that it is possible to select the magnetic fields and flux surfaces in such a manner that no singularities appear on resonant surfaces. One boundary surface of the parallelopiped is not arbitrary but is dependent on the equilibrium in question. A comparison of the solution sets of axisymmetric and non-axisymmetric equilibria suggests that the latter have a wider class of possible boundary shapes but more restrictive rotational transform profiles. No proof of convergence of the series is given.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-02-28
    Description: A theoretical analysis for astrophysics-oriented laser-matter interaction experiments in the presence of a strong ambient magnetic field is presented. It is shown that the plasma collision in the ambient magnetic field implies significant perturbations in the electron density and magnetic field distribution. This transient stage is difficult to observe in astrophysical phenomena, but it could be investigated in laboratory experiments. Analytic models are presented, which are supported by particles-in-cell simulations.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-02-28
    Description: Extremely low density operation free of error field penetration supports the excitation of trace-level quiescent runaway electron (RE) populations during the flat-top of DIII-D Ohmic discharges. Operation in the quiescent regime allows accurate measurement of all key parameters important to RE excitation, including the internal broadband magnetic fluctuation level. RE onset is characterized and found to be consistent with primary (Dreicer) generation rates. Impurity-free collisional suppression of the RE population is investigated by stepping the late-time main-ion density, until RE decay is observed. The transition from growth to decay is found to occur 3–5 times above the theoretical critical electric field for avalanche growth and is thus indicative of anomalous RE loss. This suggests that suppression of tokamak RE avalanches can be achieved at lower density than previously expected, though extrapolation requires predictive understanding of the RE loss mechanism and magnitude.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-03-01
    Description: We demonstrate a considerable suppression of the low-field leakage through a Y 2 O 3 topgate insulator on graphene by applying high-pressure O 2 at 100 atm during post-deposition annealing (HP-PDA). Consequently, the quantum capacitance measurement for the monolayer graphene reveals the largest Fermi energy modulation ( E F  = ∼0.52 eV, i.e., the carrier density of ∼2 × 10 13  cm −2 ) in the solid-state topgate insulators reported so far. HP-PDA is the robust method to improve the electrical quality of high- k insulators on graphene.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-03-01
    Description: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography image from boron neutron capture therapy using Monte Carlo simulation. Prompt gamma ray (478 keV) was used to reconstruct image with ordered subsets expectation maximization method. From analysis of receiver operating characteristic curve, area under curve values of three boron regions were 0.738, 0.623, and 0.817. The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm, and 1.4 cm.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-03-01
    Description: Transition from random to persistent cell motility requires spatiotemporal organization of the cytoskeleton and focal adhesions. The influence of these two structures on cell steering can also be gleaned from trypsin de-adhesion experiments, wherein cells exposed to trypsin round up, exhibiting a combination of rotation and translation. Here, we present a model to evaluate the contributions of contractility and bond distribution to experimentally observed de-adhesion. We show that while asymmetry in bond distribution causes only cell translation, a combination of asymmetric bond distribution and non-uniform contractility is required for translation and rotation and may guide cell migration.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-03-01
    Description: Stress gradients generated near the top surface of Cu thin films by capping layers, as measured using a combination of conventional and glancing incidence x-ray diffraction, exhibit heterogeneous behavior that is directly related to plastic anisotropy within the Cu grains. A comparison of stress gradients measured from several x-ray reflections to their corresponding Schmid factors yields a consistent, critical resolved shear stress. The results experimentally verify that dislocation-mediated plasticity is responsible for the creation of stress gradients at the Cu film/cap interface. Depth-dependent measurements reveal that the observed gradients are localized to within 200 nm of this interface.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-03-01
    Description: We study room temperature optics and electronic structures of ZnO:Cu films as a function of Cu concentration using a combination of spectroscopic ellipsometry, photoluminescence, and ultraviolet-visible absorption spectroscopy. Mid-gap optical states, interband transitions, and excitons are observed and distinguishable. We argue that the mid-gap states are originated from interactions of Cu and oxygen vacancy (Vo). They are located below conduction band (Zn4 s ) and above valence band (O2 p ) promoting strong green emission and narrowing optical band gap. Excitonic states are screened and its intensities decrease upon Cu doping. Our results show the importance of Cu and Vo driving the electronic structures and optical transitions in ZnO:Cu films.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-03-01
    Description: In this paper, we demonstrate that a high degree of alignment can be imposed upon randomly oriented gold nanorod films by angular photothermal depletion with linearly polarized laser irradiation. The photothermal reshaping of gold nanorods is observed to follow quadratic melting model rather than the threshold melting model, which distorts the angular and spectral hole created on 2D distribution map of nanorods to be an open crater shape. We have accounted these observations to the alignment procedures and demonstrated good agreement between experiment and simulations. The use of multiple laser depletion wavelengths allowed alignment criteria over a large range of aspect ratios, achieving 80% of the rods in the target angular range. We extend the technique to demonstrate post-alignment in a multilayer of randomly oriented gold nanorod films, with arbitrary control of alignment shown across the layers. Photothermal angular depletion alignment of gold nanorods is a simple, promising post-alignment method for creating future 3D or multilayer plasmonic nanorod based devices and structures.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-03-01
    Description: A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high- T c superconductor Bi 2 Sr 2 CaCu 2 O 8+δ was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-03-01
    Description: An interesting layered structure of multiple high density layers are formed when two counter-propagating circularly polarized laser pulses with the same polarization direction irradiate on an ultra-thin foil. This structure changes periodically. For light atoms most of which electrons may be fully ionized, this layered structure can keep for dozens of laser periods after the laser-foil interaction. This interesting structure may have potential applications.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-03-01
    Description: The National Ignition Campaign (NIC) was a multi-institution effort established under the National Nuclear Security Administration of DOE in 2005, prior to the completion of the National Ignition Facility (NIF) in 2009. The scope of the NIC was the planning and preparation for and the execution of the first 3 yr of ignition experiments (through the end of September 2012) as well as the development, fielding, qualification, and integration of the wide range of capabilities required for ignition. Besides the operation and optimization of the use of NIF, these capabilities included over 50 optical, x-ray, and nuclear diagnostic systems, target fabrication facilities, experimental platforms, and a wide range of NIF facility infrastructure. The goal of ignition experiments on the NIF is to achieve, for the first time, ignition and thermonuclear burn in the laboratory via inertial confinement fusion and to develop a platform for ignition and high energy density applications on the NIF. The goal of the NIC was to develop and integrate all of the capabilities required for a precision ignition campaign and, if possible, to demonstrate ignition and gain by the end of FY12. The goal of achieving ignition can be divided into three main challenges. The first challenge is defining specifications for the target, laser, and diagnostics with the understanding that not all ignition physics is fully understood and not all material properties are known. The second challenge is designing experiments to systematically remove these uncertainties. The third challenge is translating these experimental results into metrics designed to determine how well the experimental implosions have performed relative to expectations and requirements and to advance those metrics toward the conditions required for ignition. This paper summarizes the approach taken to address these challenges, along with the progress achieved to date and the challenges that remain. At project completion in 2009, NIF lacked almost all the diagnostics and infrastructure required for ignition experiments. About half of the 3 yr period covered in this review was taken up by the effort required to install and performance qualify the equipment and experimental platforms needed for ignition experiments. Ignition on the NIF is a grand challenge undertaking and the results presented here represent a snapshot in time on the path toward that goal. The path forward presented at the end of this review summarizes plans for the Ignition Campaign on the NIF, which were adopted at the end of 2012, as well as some of the key results obtained since the end of the NIC.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-03-01
    Description: In this paper, the propagation of solitary waves in a bounded plasma is theoretically investigated in terms of finite geometry. We employ the reductive perturbation theory to derive a quasi KdV equation, which characterizes the damping solitary wave in terms of kinematic viscosity coefficient ν ′ and radius R . It is noted that the damping rate increases as ν ′ increases or R decreases. We also observe the existence of damping solitary wave from the fact that its amplitude disappears rapidly for R → 0 or ν ′ → + ∞ .
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-03-01
    Description: The traditional theory of the resistive wall modes (RWMs) in the toroidal fusion systems was developed assuming the magnetic permeability μ of the wall the same as the vacuum one μ 0 . Here, we analyze the dynamics of unstable RWMs at the presence of a ferromagnetic wall with μ ̂ ≡ μ / μ 0 ≤ 4 . This choice with μ ̂ = c o n s t corresponds to the saturated state of ferritic materials in a strong magnetic field, as it should be in a tokamak reactor. The study is based on the cylindrical dispersion relation valid for arbitrary s / d w , where s is the skin depth and d w is the wall thickness. This equation is solved numerically, and the solutions are compared with analytical asymptotes obtained for slow ( s ≫ d w ) and fast ( s ≪ d w ) RWMs. Within the model, only very slow RWMs are found insensitive to variations of μ ̂ , while slightly above the no-wall stability limit the growth rate of the modes increases with larger μ ̂ . It is shown that at s 〈 d w this increase is roughly given by a factor of μ ̂ compared to a similar case with μ ̂ = 1 . The dependence of the transition from slow to fast RWMs on μ ̂ is discussed, and the accuracy of the available analytical relations is evaluated.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-03-01
    Description: Recent experiments on the Z accelerator have produced high-energy (17 keV) inner-shell K-alpha emission from molybdenum wire array z-pinches. Extensive absolute power and spectroscopic diagnostics along with collisional-radiative modeling enable detailed investigation into the roles of thermal, hot electron, and fluorescence processes in the production of high-energy x-rays. We show that changing the dimensions of the arrays can impact the proportion of thermal and non-thermal K-shell x-rays.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-03-01
    Description: Measurements of silver K-shell and bremsstrahlung emission from thin-foil laser targets as a function of laser prepulse energy are presented. The silver targets were chosen as a potential 22 keV backlighter source for the National Ignition Facility Experiments. The targets were irradiated by the Titan laser with an intensity of 8 × 10 17 W/cm 2 with 40 ps pulse length. A secondary nanosecond timescale laser pulse with controlled, variable energy was used to emulate the laser prepulse. Results show a decrease in both K α and bremsstrahlung yield with increasing artificial prepulse. Radiation hydrodynamic modeling of the prepulse interaction determined that the preplasma and intact target fraction were different in the three prepulse energies investigated. Interaction of the short pulse laser with the resulting preplasma and target was then modeled using a particle-in-cell code PSC which explained the experimental results. The relevance of this work to future Advanced Radiographic Capability laser x-ray backlighter sources is discussed.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-03-01
    Description: In low-pressure inductively coupled argon and oxygen discharges, the plasma density and electron temperature and the electron energy distribution function (EEDF) were obtained by using a cylindrical electric probe. The plasma densities were determined by various methods to interpret the probe current-voltage characteristic curve: the EEDF integration, the electron saturation current, the ion current at the floating potential, and the orbital-motion-limited (OML) ion current. Quite a good agreement exists between the plasma densities determined by various classical methods. Although the probe technique has some limitation in electronegative plasmas, the plasma densities determined from OML theory compare well with those measured by the ion saturation current at the floating potential in the oxygen discharges. In addition, the EEDFs of inductively coupled Ar and oxygen plasmas are observed to be nearly Maxwellian at the pressure range of 1-40 mTorr.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-03-01
    Description: A hot ( T e ≈ 10 eV) electron population is observed in the core of a 3 mTorr argon helicon plasma source at 500 W RF power and 900 G uniform axial magnetic field strength, 12 cm from the edge of the helicon antenna. A double layer-like structure consisting of a localized axial electric field of approximately 8 V/cm over 1–2 cm is observed adjacent to the hot electron population. The potential step generated by the electric field is shown to be large enough to trap the hot electrons. To our knowledge this is the first observation of these structures in the core of a helicon discharge.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-03-01
    Description: Results of the first validation of large guide field, B g / δ B 0 ≫ 1 , gyrokinetic simulations of magnetic reconnection at a fusion and solar corona relevant β i = 0.01 and solar wind relevant β i = 1 are presented, where δ B 0 is the reconnecting field. Particle-in-cell (PIC) simulations scan a wide range of guide magnetic field strength to test for convergence to the gyrokinetic limit. The gyrokinetic simulations display a high degree of morphological symmetry, to which the PIC simulations converge when β i B g / δ B 0 ≳ 1 and B g / δ B 0 ≫ 1 . In the regime of convergence, the reconnection rate, relative energy conversion, and overall magnitudes are found to match well between the PIC and gyrokinetic simulations, implying that gyrokinetics is capable of making accurate predictions well outside its regime of formal applicability. These results imply that in the large guide field limit many quantities resulting from the nonlinear evolution of reconnection scale linearly with the guide field.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-03-01
    Description: Experiments on the Titan laser (∼150 J, 0.7 ps, 2 × 10 20  W cm −2 ) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo code Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2 MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5 MeV and 4 MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-03-01
    Description: Silver (Ag) wire arrays were recently introduced as efficient x-ray radiators and have been shown to create L-shell plasmas that have the highest electron temperature (〉1.8 keV) observed on the Zebra generator so far and upwards of 30 kJ of energy output. In this paper, results of single planar wire arrays and double planar wire arrays of Ag and mixed Ag and Al that were tested on the UNR Zebra generator are presented and compared. To further understand how L-shell Ag plasma evolves in time, a time-gated x-ray spectrometer was designed and fielded, which has a spectral range of approximately 3.5–5.0 Å. With this, L-shell Ag as well as cold L α and L β Ag lines was captured and analyzed along with photoconducting diode (PCD) signals (〉0.8 keV). Along with PCD signals, other signals, such as filtered XRD (〉0.2 keV) and Si-diodes (SiD) (〉9 keV), are analyzed covering a broad range of energies from a few eV to greater than 53 keV. The observation and analysis of cold L α and L β lines show possible correlations with electron beams and SiD signals. Recently, an interesting issue regarding these Ag plasmas is whether lasing occurs in the Ne-like soft x-ray range, and if so, at what gains? To help answer this question, a non-local thermodynamic equilibrium (LTE) kinetic model was utilized to calculate theoretical lasing gains. It is shown that the Ag L-shell plasma conditions produced on the Zebra generator at 1.7 maximum current may be adequate to produce gains as high as 6 cm −1 for various 3p → 3s transitions. Other potential lasing transitions, including higher Rydberg states, are also included in detail. The overall importance of Ag wire arrays and plasmas is discussed.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-03-01
    Description: The femtosecond population dynamics of gold irradiated by a coherent high-intensity (〉10 17  W/cm 2 ) x-ray laser pulse is investigated theoretically. There are two aspects to the assembled model. One is the construction of a detailed model of platinum-like gold inclusive of all inner-shell states that are created by photoionization of atomic gold and decay either by radiative or Auger processes. Second is the computation of the population dynamics that ensues when an x-ray pulse is absorbed in gold. The hole state generation depends on the intensity and wavelength of the driving x-ray pulse. The excited state populations reached during a few femtosecond timescales are high enough to generate population inversions, whose gain coefficients are calculated. These amplified lines in the emitted x-ray spectrum provide important diagnostics of the radiation dynamics and also suggest a nonlinear way to increase the frequency of the coherent output x-ray pulses relative to the frequency of the driver input x-ray pulse.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-03-01
    Description: X-ray emission from hollow ions offers new diagnostic opportunities for dense, strongly coupled plasma. We present extended modeling of the x-ray emission spectrum reported by Colgan et al. [Phys. Rev. Lett. 110 , 125001 (2013)] based on two collisional-radiative codes: the hybrid-structure Spectroscopic Collisional-Radiative Atomic Model (SCRAM) and the mixed-unresolved transition arrays (MUTA) ATOMIC model. We show that both accuracy and completeness in the modeled energy level structure are critical for reliable diagnostics, investigate how emission changes with different treatments of ionization potential depression, and discuss two approaches to handling the extensive structure required for hollow-ion models with many multiply excited configurations.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-03-01
    Description: This paper examines some important relationships, related with the system efficiency, for very high power, radio frequency solid-state transmitter; incorporating multiple solid-state power amplifier modules, power combiners, dividers, couplers, and control/interlock hardware. In particular, the characterization of such transmitters, at the component as well as the system level, is discussed. The analysis for studying the influence of the amplitude and phase imbalance, on useful performance parameters like system efficiency and power distribution is performed. This analysis is based on a scattering parameter model. This model serves as a template for fine-tuning the results, with the help of a system level simulator. For experimental study, this approach is applied to a recently designed modular and scalable solid-state transmitter, operating at the centre frequency of 505.8 MHz and capable of delivering a continuous power of 75 kW. Such first time presented, system level study and experimental characterization for the real time operation will be useful for the high power solid-state amplifier designs, deployed in particle accelerators.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-03-01
    Description: The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly- para -phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photon conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-03-04
    Description: Extended X-ray absorption fine structure (EXAFS) spectroscopy is a powerful method to investigate the local structure of thin films. Here, we have studied EXAFS of MgB 2 films grown on SiC buffer layers. Crystalline SiC buffer layers with different thickness of 70, 100, and 130 nm were deposited on the Al 2 O 3 (0001) substrates by using a pulsed laser deposition method, and then MgB 2 films were grown on the SiC buffer layer by using a hybrid physical-chemical vapor deposition technique. Transition temperature of MgB 2 film decreased with increasing thickness of SiC buffer layer. However, the T c dropping went no farther than 100 nm-thick-SiC. This uncommon behavior of transition temperature is likely to be created from electron-phonon interaction in MgB 2 films, which is believed to be related to the ordering of MgB 2 atomic bonds, especially in the ordering of Mg–Mg bonds. Analysis from Mg K -edge EXAFS measurements showed interesting ordering behavior of MgB 2 films. It is noticeable that the ordering of Mg–B bonds is found to decrease monotonically with the increase in SiC thickness of the MgB 2 films, while the opposite happens with the ordering in Mg–Mg bonds. Based on these results, crystalline SiC buffer layers in MgB 2 films seemingly have evident effects on the alteration of the local structure of the MgB 2 film.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2014-03-04
    Description: We have studied the correlation between the broadening of the isothermal magnetic entropy change and the Curie temperature ( T C ) distribution in nanostructured Pr 2 Fe 17 and Nd 2 Fe 17 alloys produced by high-energy ball-milling after milling times of 10, 20, and 40 h. The changes in the microstructure affect the Fe local environments and as a consequence the magnetic interactions, giving rise to T C distributions centered around 285 K and 330 K for the Pr 2 Fe 17 and Nd 2 Fe 17 alloys, respectively. The width of the distributions enlarges (up to 60 K) as the milling-time increases, and consequently, the isothermal magnetic entropy change curves show an extended full width at half maximum.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...