ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (178)
  • Models, Biological  (178)
  • 2010-2014  (178)
  • Computer Science  (178)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
Collection
  • Articles  (178)
Years
Year
Topic
  • 1
    Publication Date: 2014-10-11
    Description: During animal cell division, the cleavage furrow is positioned by microtubules that signal to the actin cortex at the cell midplane. We developed a cell-free system to recapitulate cytokinesis signaling using cytoplasmic extract from Xenopus eggs. Microtubules grew out as asters from artificial centrosomes and met to organize antiparallel overlap zones. These zones blocked the interpenetration of neighboring asters and recruited cytokinesis midzone proteins, including the chromosomal passenger complex (CPC) and centralspindlin. The CPC was transported to overlap zones, which required two motor proteins, Kif4A and a Kif20A paralog. Using supported lipid bilayers to mimic the plasma membrane, we observed the recruitment of cleavage furrow markers, including an active RhoA reporter, at microtubule overlaps. This system opens further approaches to understanding the biophysics of cytokinesis signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281018/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281018/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nguyen, Phuong A -- Groen, Aaron C -- Loose, Martin -- Ishihara, Keisuke -- Wuhr, Martin -- Field, Christine M -- Mitchison, Timothy J -- GM103785/GM/NIGMS NIH HHS/ -- GM39565/GM/NIGMS NIH HHS/ -- R01 GM039565/GM/NIGMS NIH HHS/ -- R01 GM103785/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 10;346(6206):244-7. doi: 10.1126/science.1256773.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. Marine Biological Laboratory, Woods Hole, MA 02543, USA. ; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. Marine Biological Laboratory, Woods Hole, MA 02543, USA. Christine_Field@hms.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25301629" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/chemistry/*physiology ; *Cell-Free System ; Centrosome/physiology ; *Cytokinesis ; DNA-Binding Proteins/genetics/metabolism ; Guanosine Triphosphate/metabolism ; Kinesin/genetics/metabolism ; Lipid Bilayers ; Microtubules/physiology ; Models, Biological ; Nuclear Proteins/genetics/metabolism ; *Signal Transduction ; Xenopus laevis ; rhoA GTP-Binding Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-27
    Description: Development requires tissue growth as well as cell diversification. To address how these processes are coordinated, we analyzed the development of molecularly distinct domains of neural progenitors in the mouse and chick neural tube. We show that during development, these domains undergo changes in size that do not scale with changes in overall tissue size. Our data show that domain proportions are first established by opposing morphogen gradients and subsequently controlled by domain-specific regulation of differentiation rate but not differences in proliferation rate. Regulation of differentiation rate is key to maintaining domain proportions while accommodating both intra- and interspecies variations in size. Thus, the sequential control of progenitor specification and differentiation elaborates pattern without requiring that signaling gradients grow as tissues expand.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228193/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228193/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kicheva, Anna -- Bollenbach, Tobias -- Ribeiro, Ana -- Valle, Helena Perez -- Lovell-Badge, Robin -- Episkopou, Vasso -- Briscoe, James -- 098326/Wellcome Trust/United Kingdom -- MC_U117560541/Medical Research Council/United Kingdom -- MC_U120074332/Medical Research Council/United Kingdom -- MR/J013331/1/Medical Research Council/United Kingdom -- R01 EB016629/EB/NIBIB NIH HHS/ -- U117560541/Medical Research Council/United Kingdom -- WT098326MA/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Sep 26;345(6204):1254927. doi: 10.1126/science.1254927.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC), National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW71AA, UK. ; Institute of Science and Technology (IST) Austria, Am Campus 1, A - 3400 Klosterneuburg, Austria. ; Medical Research Council (MRC), National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW71AA, UK. Imperial College London, UK. ; Medical Research Council (MRC), National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW71AA, UK. Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Hong Kong. Division of Biosciences, Faculty of Life Sciences, University College London, UK. ; Division of Brain Sciences, Faculty of Medicine, Imperial College London, UK. ; Medical Research Council (MRC), National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW71AA, UK. jbrisco@nimr.mrc.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25258086" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; *Cell Differentiation ; Chick Embryo ; Mice ; Models, Biological ; Neural Tube/cytology/*embryology ; Spinal Cord/*embryology ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-09-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kupferschmidt, Kai -- New York, N.Y. -- Science. 2014 Sep 5;345(6201):1108. doi: 10.1126/science.345.6201.1108.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25190771" target="_blank"〉PubMed〈/a〉
    Keywords: Africa, Western/epidemiology ; *Ebolavirus ; Epidemics ; Hemorrhagic Fever, Ebola/*epidemiology/*prevention & control ; Humans ; Models, Biological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-16
    Description: Natural interconversions between distinct somatic cell types have been reported in species as diverse as jellyfish and mice. The efficiency and reproducibility of some reprogramming events represent unexploited avenues in which to probe mechanisms that ensure robust cell conversion. We report that a conserved H3K27me3/me2 demethylase, JMJD-3.1, and the H3K4 methyltransferase Set1 complex cooperate to ensure invariant transdifferentiation (Td) of postmitotic Caenorhabditis elegans hindgut cells into motor neurons. At single-cell resolution, robust conversion requires stepwise histone-modifying activities, functionally partitioned into discrete phases of Td through nuclear degradation of JMJD-3.1 and phase-specific interactions with transcription factors that have conserved roles in cell plasticity and terminal fate selection. Our results draw parallels between epigenetic mechanisms underlying robust Td in nature and efficient cell reprogramming in vitro.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuryn, Steven -- Ahier, Arnaud -- Portoso, Manuela -- White, Esther Redhouse -- Morin, Marie-Charlotte -- Margueron, Raphael -- Jarriault, Sophie -- New York, N.Y. -- Science. 2014 Aug 15;345(6198):826-9. doi: 10.1126/science.1255885.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Development and Stem Cells, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Universite de Strasbourg, 67404 Illkirch CU Strasbourg, France. ; Institut Curie, INSERM U934, CNRS UMR3215, 26, Rue d'Ulm, 75005 Paris, France. ; Department of Development and Stem Cells, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Universite de Strasbourg, 67404 Illkirch CU Strasbourg, France. sophie@igbmc.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25124442" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/*cytology/genetics ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Dedifferentiation ; Cell Nucleus/metabolism/ultrastructure ; *Cell Transdifferentiation ; Digestive System/cytology ; Histone Demethylases/chemistry/genetics/*metabolism ; Histone-Lysine N-Methyltransferase/genetics/*metabolism ; Histones/*metabolism ; Lysine/metabolism ; Methylation ; Models, Biological ; Molecular Sequence Data ; Motor Neurons/*cytology ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-02
    Description: During limb development, digits emerge from the undifferentiated mesenchymal tissue that constitutes the limb bud. It has been proposed that this process is controlled by a self-organizing Turing mechanism, whereby diffusible molecules interact to produce a periodic pattern of digital and interdigital fates. However, the identities of the molecules remain unknown. By combining experiments and modeling, we reveal evidence that a Turing network implemented by Bmp, Sox9, and Wnt drives digit specification. We develop a realistic two-dimensional simulation of digit patterning and show that this network, when modulated by morphogen gradients, recapitulates the expression patterns of Sox9 in the wild type and in perturbation experiments. Our systems biology approach reveals how a combination of growth, morphogen gradients, and a self-organizing Turing network can achieve robust and reproducible pattern formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raspopovic, J -- Marcon, L -- Russo, L -- Sharpe, J -- New York, N.Y. -- Science. 2014 Aug 1;345(6196):566-70. doi: 10.1126/science.1252960.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Systems Biology Program, Centre for Genomic Regulation (CRG), and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain. ; Systems Biology Program, Centre for Genomic Regulation (CRG), and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain. Institucio Catalana de Recerca i Estudis Avancats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain. james.sharpe@crg.eu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25082703" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning/*genetics ; Bone Morphogenetic Proteins/*metabolism ; Computer Simulation ; Extremities/*embryology ; Female ; *Gene Expression Regulation, Developmental ; Gene Knockdown Techniques ; Green Fluorescent Proteins/genetics/metabolism ; Limb Buds/*embryology ; Mice ; Mice, Inbred Strains ; Models, Biological ; Oligonucleotide Array Sequence Analysis ; SOX9 Transcription Factor/genetics/*metabolism ; Wnt Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-05-31
    Description: Cells are active systems with molecular force generation that drives complex dynamics at the supramolecular scale. We present a quantitative study of molecular motions in cells over times from milliseconds to hours. Noninvasive tracking was accomplished by imaging highly stable near-infrared luminescence of single-walled carbon nanotubes targeted to kinesin-1 motor proteins in COS-7 cells. We observed a regime of active random "stirring" that constitutes an intermediate mode of transport, different from both thermal diffusion and directed motor activity. High-frequency motion was found to be thermally driven. At times greater than 100 milliseconds, nonequilibrium dynamics dominated. In addition to directed transport along microtubules, we observed strong random dynamics driven by myosins that result in enhanced nonspecific transport. We present a quantitative model connecting molecular mechanisms to mesoscopic fluctuations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fakhri, Nikta -- Wessel, Alok D -- Willms, Charlotte -- Pasquali, Matteo -- Klopfenstein, Dieter R -- MacKintosh, Frederick C -- Schmidt, Christoph F -- New York, N.Y. -- Science. 2014 May 30;344(6187):1031-5. doi: 10.1126/science.1250170.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Drittes Physikalisches Institut-Biophysik, Georg-August-Universitat, 37077 Gottingen, Germany. ; Department of Chemical and Biomolecular Engineering, Department of Chemistry, Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, TX 77005, USA. ; Department of Physics and Astronomy, Vrije Universiteit, 1081 HV Amsterdam, Netherlands. christoph.schmidt@phys.uni-goettingen.de fcmack@gmail.com. ; Drittes Physikalisches Institut-Biophysik, Georg-August-Universitat, 37077 Gottingen, Germany. christoph.schmidt@phys.uni-goettingen.de fcmack@gmail.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876498" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Cell Tracking/*methods ; Cercopithecus aethiops ; Kinesin/chemistry/metabolism ; Microtubules/metabolism ; Models, Biological ; Molecular Motor Proteins/chemistry/*metabolism ; Motion ; Myosins/chemistry/metabolism ; *Nanotubes, Carbon
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-05-17
    Description: Nuclear magnetic resonance (NMR) spectroscopy is useful to determine molecular structure in tissues grown in vitro only if their fidelity, relative to native tissue, can be established. Here, we use multidimensional NMR spectra of animal and in vitro model tissues as fingerprints of their respective molecular structures, allowing us to compare the intact tissues at atomic length scales. To obtain spectra from animal tissues, we developed a heavy mouse enriched by about 20% in the NMR-active isotopes carbon-13 and nitrogen-15. The resulting spectra allowed us to refine an in vitro model of developing bone and to probe its detailed structure. The identification of an unexpected molecule, poly(adenosine diphosphate ribose), that may be implicated in calcification of the bone matrix, illustrates the analytical power of this approach.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chow, W Ying -- Rajan, Rakesh -- Muller, Karin H -- Reid, David G -- Skepper, Jeremy N -- Wong, Wai Ching -- Brooks, Roger A -- Green, Maggie -- Bihan, Dominique -- Farndale, Richard W -- Slatter, David A -- Shanahan, Catherine M -- Duer, Melinda J -- BB/G021392/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0500707/Medical Research Council/United Kingdom -- PG/08/011/24416/British Heart Foundation/United Kingdom -- PG/10/43/28390/British Heart Foundation/United Kingdom -- RG/09/003/27122/British Heart Foundation/United Kingdom -- RG/11/14/29056/British Heart Foundation/United Kingdom -- New York, N.Y. -- Science. 2014 May 16;344(6185):742-6. doi: 10.1126/science.1248167.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. ; Orthopaedic Research Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK. ; Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3DY, UK. ; Central Biomedical Resources, University of Cambridge, School of Clinical Medicine, West Forvie Building, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK. ; Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK. ; British Heart Foundation Centre of Research Excellence, Cardiovascular Division, James Black Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK. ; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. mjd13@cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833391" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bone Development ; *Calcification, Physiologic ; Carbon Isotopes ; Extracellular Matrix/chemistry ; Growth Plate/growth & development ; Mice ; Models, Biological ; Nitrogen Isotopes ; Nuclear Magnetic Resonance, Biomolecular/*methods ; Poly Adenosine Diphosphate Ribose/*analysis ; Sheep
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-05-03
    Description: Microbial reduction of ferric iron [Fe(III)] is an important biogeochemical process in anoxic aquifers. Depending on groundwater pH, dissimilatory metal-reducing bacteria can also respire alternative electron acceptors to survive, including elemental sulfur (S(0)). To understand the interplay of Fe/S cycling under alkaline conditions, we combined thermodynamic geochemical modeling with bioreactor experiments using Shewanella oneidensis MR-1. Under these conditions, S. oneidensis can enzymatically reduce S(0) but not goethite (alpha-FeOOH). The HS(-) produced subsequently reduces goethite abiotically. Because of the prevalence of alkaline conditions in many aquifers, Fe(III) reduction may thus proceed via S(0)-mediated electron-shuttling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flynn, Theodore M -- O'Loughlin, Edward J -- Mishra, Bhoopesh -- DiChristina, Thomas J -- Kemner, Kenneth M -- HHSN272200900040C/PHS HHS/ -- New York, N.Y. -- Science. 2014 May 30;344(6187):1039-42. doi: 10.1126/science.1252066. Epub 2014 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA. Computation Institute, University of Chicago, Chicago, IL 60637, USA. ; Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA. ; Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA. Physics Department, Illinois Institute of Technology, Chicago, IL 60616, USA. ; School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA. ; Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA. kemner@anl.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24789972" target="_blank"〉PubMed〈/a〉
    Keywords: Alkalies/chemistry ; Bioreactors ; Electron Transport ; Ferric Compounds/*metabolism ; Hydrogen-Ion Concentration ; Iron/*metabolism ; Iron Compounds/metabolism ; Metabolic Networks and Pathways ; Minerals/metabolism ; Models, Biological ; Mutation ; Oxidation-Reduction ; Shewanella/*enzymology/genetics ; Sulfur/*metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-26
    Description: Light is a source of energy and also a regulator of plant physiological adaptations. We show here that light/dark conditions affect alternative splicing of a subset of Arabidopsis genes preferentially encoding proteins involved in RNA processing. The effect requires functional chloroplasts and is also observed in roots when the communication with the photosynthetic tissues is not interrupted, suggesting that a signaling molecule travels through the plant. Using photosynthetic electron transfer inhibitors with different mechanisms of action, we deduce that the reduced pool of plastoquinones initiates a chloroplast retrograde signaling that regulates nuclear alternative splicing and is necessary for proper plant responses to varying light conditions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382720/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382720/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petrillo, Ezequiel -- Godoy Herz, Micaela A -- Fuchs, Armin -- Reifer, Dominik -- Fuller, John -- Yanovsky, Marcelo J -- Simpson, Craig -- Brown, John W S -- Barta, Andrea -- Kalyna, Maria -- Kornblihtt, Alberto R -- BB/G024979/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- P 26333/Austrian Science Fund FWF/Austria -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):427-30. doi: 10.1126/science.1250322. Epub 2014 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratorio de Fisiologia y Biologia Molecular, Departamento de Fisiologia, Biologia Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2, C1428EHA Buenos Aires, Argentina.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763593" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Arabidopsis/*genetics/metabolism ; Arabidopsis Proteins/genetics/metabolism ; Cell Nucleus/genetics ; Chloroplasts/*metabolism ; Circadian Clocks ; Dibromothymoquinone/pharmacology ; Diuron/pharmacology ; Electron Transport/drug effects ; *Gene Expression Regulation, Plant ; Light ; Models, Biological ; Oxidation-Reduction ; Photosynthesis/drug effects ; Plant Leaves/metabolism ; Plant Roots/metabolism ; Plants, Genetically Modified ; Plastoquinone/*metabolism ; RNA Stability ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Seedlings/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-03-22
    Description: Wnt/beta-catenin signaling is critical for tissue regeneration. However, it is unclear how beta-catenin controls stem cell behaviors to coordinate organized growth. Using live imaging, we show that activation of beta-catenin specifically within mouse hair follicle stem cells generates new hair growth through oriented cell divisions and cellular displacement. beta-Catenin activation is sufficient to induce hair growth independently of mesenchymal dermal papilla niche signals normally required for hair regeneration. Wild-type cells are co-opted into new hair growths by beta-catenin mutant cells, which non-cell autonomously activate Wnt signaling within the neighboring wild-type cells via Wnt ligands. This study demonstrates a mechanism by which Wnt/beta-catenin signaling controls stem cell-dependent tissue growth non-cell autonomously and advances our understanding of the mechanisms that drive coordinated regeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096864/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096864/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deschene, Elizabeth R -- Myung, Peggy -- Rompolas, Panteleimon -- Zito, Giovanni -- Sun, Thomas Yang -- Taketo, Makoto M -- Saotome, Ichiko -- Greco, Valentina -- 1R01AR063663-01/AR/NIAMS NIH HHS/ -- 2P50CA121974/CA/NCI NIH HHS/ -- 5P30 AR053495-07/AR/NIAMS NIH HHS/ -- K08 AR066790/AR/NIAMS NIH HHS/ -- P30 CA016359/CA/NCI NIH HHS/ -- P50 CA121974/CA/NCI NIH HHS/ -- R01 AR063663/AR/NIAMS NIH HHS/ -- T32 GM007223/GM/NIGMS NIH HHS/ -- TG32 GM007223/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1353-6. doi: 10.1126/science.1248373.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Yale Stem Cell Center, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653033" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Hair/*growth & development ; Hair Follicle/*cytology/*metabolism ; Ligands ; Mice ; Models, Biological ; Mutation ; Stem Cell Niche ; Stem Cells/cytology/*metabolism ; Tamoxifen/pharmacology ; Up-Regulation ; Wnt Proteins/genetics/metabolism ; *Wnt Signaling Pathway ; beta Catenin/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...