ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (3)
  • Geophysics  (1)
  • ice nucleating particles
  • thema EDItEUR::P Mathematics and Science::PH Physics
  • 2010-2014  (4)
Collection
Keywords
  • Meteorology and Climatology  (3)
  • Geophysics  (1)
  • ice nucleating particles
  • thema EDItEUR::P Mathematics and Science::PH Physics
  • Geosciences (General)  (1)
Years
Year
  • 1
    Publication Date: 2019-07-13
    Description: Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (0.06 Wm(exp-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 +/- 0.10 Wm(exp-2) (1 sigma uncertainty). This represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of 1.6 Wm(sup-2).
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN8104 , Journal of Geophysical Research; 112; D20 27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The motivation for this work is to better characterize the controls on the tropical upper tropospheric/lower stratospheric (UTLS) temperature and humidity.
    Keywords: Meteorology and Climatology
    Type: American Geophysical Union Fall Meeting; Dec 17, 2010; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The motivation for this study was to better characterize the controls on the tropical upper tropospheric/lower stratospheric (UTLS) temperature and humidity.
    Keywords: Meteorology and Climatology
    Type: A-Train Symposium; Oct 27, 2010; New Orleans, LA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider homogeneous and heterogeneous nucleation and the competition between the two mechanisms in cirrus clouds, but differ significantly in the number concentration of heterogeneous ice nuclei (IN) from dust. Heterogeneous nucleation on dust aerosol reduces the occurrence frequency of homogeneous nucleation and thus the ice crystal number concentration in the Northern Hemisphere (NH) cirrus clouds compared to simulations with pure homogeneous nucleation. Global and annual mean shortwave and longwave cloud forcing are reduced by up to 2.0+/-0.1Wm (sup2) (1 uncertainty) and 2.4+/-0.1Wm (sup2), respectively due to the presence of dust IN, with the net cloud forcing change of 0.40+/-0.20W m(sup2). Comparison of model simulations with in situ aircraft data obtained in NH mid-latitudes suggests that homogeneous ice nucleation may play an important role in the ice nucleation at these regions with temperatures of 205-230 K. However, simulations overestimate observed ice crystal number concentrations in the tropical tropopause regions with temperatures of 190- 205 K, and overestimate the frequency of occurrence of high ice crystal number concentration (greater than 200 L(sup-1) and underestimate the frequency of low ice crystal number concentration (less than 30 L(sup-1) at NH mid-latitudes. These results highlight the importance of quantifying the number concentrations and properties of heterogeneous IN (including dust aerosol) in the upper troposphere from the global perspective.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN8100 , Atmospheric Chemistry and Physics; 12; 12061-12079
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...