ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism  (5)
  • Wiley-Blackwell  (5)
  • Public Library of Science (PLoS)
  • 2010-2014  (5)
Collection
Years
Year
  • 1
    Publication Date: 2020-12-07
    Description: We present new stratigraphic, palaeomagnetic, 87Sr/86Sr and 40Ar/39Ar data from a lacustrine succession of the Sulmona basin, central Italy, which, according to an early study, included six unconformitybounded lacustrine units (from SUL6, oldest, to SUL1, youngest) spanning the interval 〉600 to 2 ka. The results of the present study, on the one hand confirm some of the previous conclusions, but by contrast reveal that units SUL2 and SUL1, previously attributed to the Holocene, are actually equivalent to the older SUL6 and SUL5 units – here dated to 814–〉530 ka and 530–〈457 ka, respectively – and that the U-series dates previously published for both former SUL2 and SUL1 units yielded abnormally young ages. In light of the present results, a reassessment of the chronology of the Sulmona basin succession and a revision of the tephrostratigraphy of the SUL2/SUL6 and SUL1/SUL5 units is in order.
    Description: Published
    Description: 545–551
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: 40Ar/39Ar dating; central Italy ; Sr isotope composition ; Sulmona lacustrine succession ; Brunhes–Matuyama geomagnetic reversal ; tephrostratigraphy ; U-series dating ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-07
    Description: We present a high-resolution palaeomagnetic and rock magnetic study of two cores, MS06 and MS06-SW (6.7 and 1.1 m long, respectively), collected at 72 m below sea level in the Augusta Bay shelf (Eastern Sicily, Ionian Sea, Italy) about 2.3 kmfrom the coastline. Geophysical surveying carried out in the sampling area highlighted the presence of a homogeneous sedimentary sequence that most likely was deposited after the Last Glacial Maximum and was not affected by anthropogenic disturbances. The two cores penetrated a monotonous mud sedimentary sequence, interrupted at ∼3 m depth by a 3–4-cm-thick volcanic sandy layer that is correlated with the tephra fallout deposit produced by the 122 BC plinian eruption of Mt Etna. This tephra, along with radiocarbon dating of nine marine shells and with radioactive tracers for the uppermost 0.3 m (210Pb and 137Cs), provide the chronological constraints for the stratigraphic sequence that resulted younger than 4500 yr BP. Palaeomagnetic and rock magnetic data show that the sample sequence is magnetically homogeneous. A single peak of high magnetic mineral concentration is present and corresponds to the volcanic sandy layer. Palaeomagnetic data allowed the identification of a well-defined characteristic remanent magnetization that provides a high-resolution record of palaeosecular variation (PSV) at the sampling site. The reconstructed PSV curve is in good agreement with the available regional reference PSV curves and with the prediction from recent PSV modelling for Europe. The palaeomagnetic data obtained in this study on the one hand support and refine the age model for the cores, derived from other independent constraints, and on the other hand provide an original high-resolution PSV curve that can serve as a reference for the central Mediterranean over the last 4 ka.
    Description: Published
    Description: 191 - 202
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Palaeointensity ; Palaeomagnetic secular variation ; Marine magnetics and palaeomagnetics ; Europe ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The Montalbano Jonico (MJ) section, cropping out in Southern Italy, represents a potential candidate to define the Lower/Middle Pleistocene boundary and it has been proposed as a suitable Global Stratotype Section and Point (GSSP) of the Ionian Stage (Middle Pleistocene). The MJ section is the only continuous benthic and planktonic δ18O on-land reference in the Mediterranean area for the Mid-Pleistocene transition, spanning an interval between about 1240 and 645 ka. Combined biostratigraphy and sapropel chronology, tephra stratigraphy and complete high-resolution benthic and planktonic foraminiferal stable oxygen isotope records already provide a firm chronostratigraphic framework for the MJ section. However, magnetostratigraphy was still required to precisely locate the Brunhes-Matuyama transition and to mark the GSSP for the Ionian stage. We carried out a palaeomagnetic study of a subsection (Ideale section) of the MJ composite section, sampling 61 oriented cores from 56 stratigraphic levels spread over a ca. 80-m-thick stratigraphic interval that correlates to the oxygen isotopic stage 19 and should therefore include the Brunhes-Matuyama reversal. The palaeomagnetic data indicate a stable and almost single-component natural remanent magnetization (NRM). A characteristic remanent magnetization (ChRM) was clearly identified by stepwise demagnetization of the NRM. The ChRM declination values vary around 0◦ and the ChRM inclination around the expected value (59◦) for a geocentric axial dipole field at the sampling locality. This result indicates that the section has been remagnetized during the Brunhes Chron. A preliminary study of 27 additional not azimuthally oriented hand samples, collected at various levels from other parts of the MJ composite section, indicates that all the samples are of normal polarity and demonstrates that the remagnetization is widespread across the whole exposed stratigraphic sequence. A series of specific rock magnetic techniques were then applied to investigate the nature of the main magnetic carrier in the study sediments, and they suggest that the main magnetic mineral in the MJ section is the iron sulphide greigite (Fe3S4). Scanning electron microscope observations and elemental microanalysis reveal that greigite occurs both as individual euhedral crystals and in iron sulphides aggregates filling voids in the clay matrix. Therefore, we infer that the remagnetization of the section is due to the late-diagenetic growth of greigite under reducing conditions, most likely resulting in the almost complete dissolution of the original magnetic minerals. Iron sulphide formation in the MJ section can be linked to migration of mineralized fluids. Our inferred timing of the remagnetization associated with greigite growth represents the longest remanence acquisition delay documented in greigite-bearing clays of the Italian peninsula so far.
    Description: In press
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: open
    Keywords: Remagnetization ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We present a high-resolution palaeomagnetic and rock magnetic study of two cores, MS06 and MS06-SW (6.7 and 1.1 m long, respectively), collected at 72 m below sea level in the Augusta Bay shelf (Eastern Sicily, Ionian Sea, Italy) about 2.3 kmfrom the coastline. Geophysical surveying carried out in the sampling area highlighted the presence of a homogeneous sedimentary sequence that most likely was deposited after the Last Glacial Maximum and was not affected by anthropogenic disturbances. The two cores penetrated a monotonous mud sedimentary sequence, interrupted at ∼3 m depth by a 3–4-cm-thick volcanic sandy layer that is correlated with the tephra fallout deposit produced by the 122 BC plinian eruption of Mt Etna. This tephra, along with radiocarbon dating of nine marine shells and with radioactive tracers for the uppermost 0.3 m (210Pb and 137Cs), provide the chronological constraints for the stratigraphic sequence that resulted younger than 4500 yr BP. Palaeomagnetic and rock magnetic data show that the sample sequence is magnetically homogeneous. A single peak of high magnetic mineral concentration is present and corresponds to the volcanic sandy layer. Palaeomagnetic data allowed the identification of a well-defined characteristic remanent magnetization that provides a high-resolution record of palaeosecular variation (PSV) at the sampling site. The reconstructed PSV curve is in good agreement with the available regional reference PSV curves and with the prediction from recent PSV modelling for Europe. The palaeomagnetic data obtained in this study on the one hand support and refine the age model for the cores, derived from other independent constraints, and on the other hand provide an original high-resolution PSV curve that can serve as a reference for the central Mediterranean over the last 4 ka.
    Description: In press
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Palaeomagnetic secular variation ; Palaeointensity ; Marine magnetics and palaeomagnetics ; Europe ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-09-03
    Description: The Montalbano Jonico (MJ) section, cropping out in Southern Italy, represents a potential candidate to define the Lower/Middle Pleistocene boundary and it has been proposed as a suitable Global Stratotype Section and Point (GSSP) of the Ionian Stage (Middle Pleistocene). The MJ section is the only continuous benthic and planktonic δ18O on-land reference in the Mediterranean area for the Mid-Pleistocene transition, spanning an interval between about 1240 and 645 ka. Combined biostratigraphy and sapropel chronology, tephra stratigraphy and complete high-resolution benthic and planktonic foraminiferal stable oxygen isotope records already provide a firm chronostratigraphic framework for the MJ section. However, magnetostratigraphy was still required to precisely locate the Brunhes-Matuyama transition and to mark the GSSP for the Ionian stage. We carried out a palaeomagnetic study of a subsection (Ideale section) of the MJ composite section, sampling 61 oriented cores from 56 stratigraphic levels spread over a ca. 80-m-thick stratigraphic interval that correlates to the oxygen isotopic stage 19 and should therefore include the Brunhes-Matuyama reversal. The palaeomagnetic data indicate a stable and almost single-component natural remanent magnetization (NRM). A characteristic remanent magnetization (ChRM) was clearly identified by stepwise demagnetization of the NRM. The ChRM declination values vary around 0◦ and the ChRM inclination around the expected value (59◦) for a geocentric axial dipole field at the sampling locality. This result indicates that the section has been remagnetized during the Brunhes Chron. A preliminary study of 27 additional not azimuthally oriented hand samples, collected at various levels from other parts of the MJ composite section, indicates that all the samples are of normal polarity and demonstrates that the remagnetization is widespread across the whole exposed stratigraphic sequence. A series of specific rock magnetic techniques were then applied to investigate the nature of the main magnetic carrier in the study sediments, and they suggest that the main magnetic mineral in the MJ section is the iron sulphide greigite (Fe3S4). Scanning electron microscope observations and elemental microanalysis reveal that greigite occurs both as individual euhedral crystals and in iron sulphides aggregates filling voids in the clay matrix. Therefore, we infer that the remagnetization of the section is due to the late-diagenetic growth of greigite under reducing conditions, most likely resulting in the almost complete dissolution of the original magnetic minerals. Iron sulphide formation in the MJ section can be linked to migration of mineralized fluids. Our inferred timing of the remagnetization associated with greigite growth represents the longest remanence acquisition delay documented in greigite-bearing clays of the Italian peninsula so far.
    Description: Published
    Description: 1049-1066
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Magnetostratigraphy ; Remagnetization ; Rock and mineral magnetization ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...