ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (20)
  • 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous  (13)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics  (4)
  • 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology
  • 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous
  • Biodiversity
  • Seismological Society of America  (15)
  • Nature Publishing Group  (5)
  • 2010-2014  (20)
Collection
  • Articles  (20)
Source
Keywords
Years
Year
  • 1
    Publication Date: 2021-06-25
    Description: We adopt a spectral-element method (SEM) to perform numerical simulations of the complex wavefield generated by the 6 April 2009 Mw 6.3 L’Aquila earthquake in central Italy. The mainshock is represented by a finite-fault solution obtained by inverting strong-motion and Global Positioning System data, testing both 1D and 3D wavespeed models for central Italy. Surface topography, attenuation, and the Moho discontinuity are also accommodated. Including these complexities is essential to accurately simulate seismic-wave propagation. Three-component synthetic waveforms are compared to corresponding velocimeter and strong-motion recordings. The results show a favorable match between data and synthetics up to ∼0:5 Hz in a 200 km × 200 km × 60 km model volume, capturing features mainly related to topography or low-wavespeed basins. We construct synthetic peak ground velocity maps that, for the 3D model, are in good agreement with observations, thus providing valuable information for seismic-hazard assessment. Exploiting the SEM in combination with an adjoint method, we calculate finite-frequency kernels for specific seismic arrivals. These kernels capture the volumetric sensitivity associated with the selected waveform and highlight prominent effects of topography on seismic-wave propagation in central Italy.
    Description: Published
    Description: JCR Journal
    Description: restricted
    Keywords: Wave Propagation ; Earthquake ; Ground Motion ; Basin & Site Effects ; Topographic Effects ; Numerical Modelling ; Spectral-Element Methods ; Adjoint Methods ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The analysis of the seismic attenuation is a prominent and problematic component of hazard assessment. Over the last decade it has become increasingly clear that the intrinsic uncertainty of the decay process must be expressed in probabilistic terms. This implies estimating the probability distribution of the intensity at a site Is as the combination of the distribution of the decay DI and of the distribution of the intensity I0 found for the area surrounding that site. We focus here on the estimation of the distribution of DI. Previous studies presented in the literature show that the intensity decay in Italian territory varies greatly from one region to another, and depends on many factors, some of them not easily measurable. Assuming that the decay shows a similar behavior in function of the epicenter-site distance when the same geophysical conditions and building vulnerability characterize different macroseismic fields, we have classified some macroseismic fields drawn from the Italian felt report database by applying a clustering algorithm. Earthquakes in the same class constitute the input of a two-step procedure for the Bayesian estimation of the probability distribution of I at any distance from the epicenter, conditioned on I0, where DI is considered an integer, random variable, following a binomial distribution. The scenario generated by a future earthquake is forecast either by the predictive distribution in each distance bin, or by a binomial distribution whose parameter is a continuous function of the distance. The estimated distributions have been applied to forecast the scenario actually produced by the Colfiorito earthquake on 1997/09/26; for both options the expected and observed intensities have been compared on the basis of some validation criteria. The same procedure has been repeated using the probability distribution of DI estimated on the basis of each class of macroseismic fields identified by the clustering algorithm.
    Description: Published
    Description: 2876-2892
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: Macroseismic fields ; Probability Distribution of the Intensity at Site ; Attenuation trends ; Colfiorito 1997 earthquake ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: This study investigates the engineering applicability of two conceptually different finite-fault simulation techniques. We focus our attention on two important aspects: first to quantify the capability of the methods to reproduce the observed ground-motion parameters (peaks and integral quantities); second to quantify the dependence of the strong-motion parameters on the variability in the large-scale kinematic definition of the source (i.e., position of the nucleation point, value of the rupture velocity, and distribution of the final slip on the fault). We applied an approximated simulation technique, the deterministic-stochastic method and a broadband technique, the hybrid-integral-composite method, to model the 1984 Mw 5.7 Gubbio, central Italy, earthquake, at five accelerometric stations. We first optimize the position of the nucleation point and the value of the rupture velocity for three different final slip distributions on the fault by minimizing an error function in terms of acceleration response spectra in the frequency band from 1 to 9 Hz. We found that the best model is given by a rupture propagating at about 2:65 km=sec from a hypocenter located approximately at the center of the fault. In the second part of the article we calculate more than 2400 scenarios varying the kinematic source parameters. At the five sites we compute the residuals distributions for the various strongmotion parameters and show that their standard deviations depend on the source parameterization adopted by the two techniques. Furthermore, we show that Arias Intensity (AI) and significant duration are characterized by the largest and smallest standard deviation, respectively. Housner Intensity is better modeled and less affected by uncertainties in the source kinematic parameters than AI. The fact that the uncertainties in the kinematic model affects the variability of different ground-motion parameters in different ways has to be taken into account when performing hazard assessment and earthquake engineering studies for future events.
    Description: Published
    Description: 647-663
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: ground-motion simulation ; Gubbio 1984 ; ground-motion variability ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Historical earthquakes of the Gargano Promontory, an uplifted foreland sector in southeastern Italy, have been usually regarded as generated by inland faults. Some have been associated with activity of the Mattinata Fault, a section of a regional E-W shear zone. The 10 August 1893, Mw 5.4 is one of such earthquakes, but its current onshore location is only loosely based on the damage pattern. Regions that were hit by offshore earthquakes are also known to be affected by a methodological bias such that offshore historical events appear to be located onshore. To test this condition for the 1893 earthquake we pursued an alternative hypothesis for its location. The earthquake occurred near the Gondola Fault Zone, a right-lateral active fault system representing the offshore counterpart of the Mattinata Fault and hence capable of producing sizable earthquakes along the Gargano coast. We focused on its westernmost segment, suggesting that it could be the causative fault of the 1893 earthquake, in agreement with both the damage distribution and reported environmental effects. The approach we present works side by side with the recent developments of the algorithms used to compile historical catalogues, providing a fine-scale, geologically-based method to define or confirm the dubious location of historical earthquakes. Marine Paleoseismology is a new field stemming from the increased capabilities of high-resolution marine techniques in supporting classical paleoseismological analyses for the exploration of the seismogenic potential of offshore faults. Based on Late Pleistocene and Holocene individual or cumulative earthquake records, the potential of offshore faults can now be constrained in terms of expected magnitude and recurrence intervals. We stress the importance of revisiting historical earthquakes in coastal zones using marine paleoseismological data to assess regional seismic hazard, particularly in tectonic settings where regional-size seismogenic areas straddle the onshore and the offshore.
    Description: UF was financially supported by MIUR (Italian Ministry of Education and Research) FIRB Project “AIRPLANE”. This research has also benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile (DPC). Scientific papers funded by DPC do not represent its official opinion and policies. This is ISMAR-Bologna contribution n. 1720.
    Description: Published
    Description: 1-17
    Description: 3.2. Tettonica attiva
    Description: 5.1. TTC - Banche dati e metodi macrosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Adriatic foreland ; Gondola Fault Zone ; macroseismic intensity ; seismic hazard ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In this paper, we adopt three ground-motion simulation techniques (EXSIM, Motazedian and Atkinson, 2005, DSM, Pacor et al., 2005 and HIC, Gallovič and Brokešová, 2007), with the aim of investigating the different performances in near-fault strong-motion modeling and prediction from past and future events. The test case is the 1980, M 6.9, Irpinia earthquake, the strongest event recorded in Italy. First, we simulate the recorded strong-motion data and validate the model parameters by computing spectral acceleration and peak amplitudes residual distributions. The validated model is then used to investigate the influence of site effects and to compute synthetic ground motions around the fault. Afterward, we simulate the expected ground motions from scenario events on the Irpinia fault, varying the hypocenters, the rupture velocities and the slip distributions. We compare the median ground motions and related standard deviations from all scenario events with empirical ground motion prediction equations (GMPEs). The synthetic median values are included in the median ± one standard deviation of the considered GMPEs. Synthetic peak ground accelerations show median values smaller and with a faster decay with distance than the empirical ones. The synthetics total standard deviation is of the same order or smaller than the empirical one and it shows considerable differences from one simulation technique to another. We decomposed the total standard deviation into its between-scenario and within-scenario components. The larger contribution to the total sigma comes from the latter while the former is found to be smaller and in good agreement with empirical inter-event variability.
    Description: In press
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: Irpinia 1980 earthquake ; ground-motion simulation ; ground-motion variability ; scenario events ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The MW 8.8 mega-thrust earthquake and tsunami that occurred on February 27, 2010, offshore Maule region, Chile, was not unexpected. A clearly identified seismic gap existed in an area where tectonic loading has been accumulating since the great 1835 earthquake experienced and described by Darwin during the voyage of the Beagle. Here we jointly invert tsunami and geodetic data (InSAR, GPS, land-level changes), to derive a robust model for the co-seismic slip distribution and induced co-seismic stress changes, and compare them to past earthquakes and the pre-seismic locking distribution. We aim to assess if the Maule earthquake has filled the Darwin gap, decreasing the probability of a future shock . We find that the main slip patch is located to the north of the gap, overlapping the rupture zone of the MW 8.0 1928 earthquake, and that a secondary concentration of slip occurred to the south; the Darwin gap was only partially filled and a zone of high pre-seismic locking remains unbroken. This observation is not consistent with the assumption that distributions of seismic rupture might be correlated with pre-seismic locking, potentially allowing the anticipation of slip distributions in seismic gaps. Moreover, increased stress on this unbroken patch might have increased the probability of another major to great earthquake there in the near future.
    Description: Published
    Description: 173-177
    Description: 3.1. Fisica dei terremoti
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Source process ; Chile ; Tsunami ; Joint Inversion ; Seismic Gap ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Studies of past sea-level markers are commonly used to unveil the tectonic history and seismic behavior of subduction zones. We present new evidence on vertical motions of the Hellenic subduction zone as resulting from a suite of Late Pleistocene - Holocene shorelines in western Crete (Greece). Shoreline ages obtained by AMS radiocarbon dating of seashells, together with the reappraisal of shoreline ages from previous works, testify a long-term uplift rate of 2.5-2.7 mm/y. This average value, however, includes periods in which the vertical motions vary significantly: 2.6-3.2 mm/y subsidence rate from 42 ka to 23 ka, followed by ~7.7 mm/y sustained uplift rate from 23 ka to present. The last ~5 ky shows a relatively slower uplift rate of 3.0-3.3 mm/y, yet slightly higher than the long-term average. A preliminary tectonic model attempts at explaining these up and down motions by across-strike partitioning of fault activity in the subduction zone.
    Description: Published
    Description: 5677
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: coastal geomorphology ; tectonic rates ; paleoshorelines ; subduction ; Crete ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The Campi Flegrei caldera (southern Italy) is one of the most hazardous areas in the World as several hundred thousand people live there and where important socio-economic activities have developed. The caldera includes the western-most part of the city of Naples and extends into the Gulf of Pozzuoli (eastern Tyrrhenian basin; Fig. 1). The main feature of the present volcanic activity of the caldera is the episodic slow and high-amplitude soil movement (bradyseism) accompanied by intense and shallow seismic activity that only occurs during the uplift phase.
    Description: Published
    Description: 916-927
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei ; volcanic activity ; seafloor monitoring ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-03
    Description: The seismic sequence that occurred in the Abruzzo Apennines near L’Aquila (Italy) in April 2009 caused extensive damage and a large number of casual- ties (more than 300). The earthquake struck an area in the Italian Apennines chain where several faults, belonging to adjacent seismotectonic domains, create a complex tectonic regime resulting from the interaction among regional stress buildup, local stress changes caused by individual earthquakes, and viscous-elastic stress relaxation. Understanding such complex interaction in the Apennines can lead to a large step for- ward in the seismic risk mitigation in Italy. The Abruzzo earthquake has been very well recorded by interferometric synthetic aperture radar (InSAR) data, much better than the first Italian earthquake ever recorded by satellites, namely, the 1997 Umbria–Marche earthquake. ENVISAT (ENVIronmental SATellite) data for the Abruzzo earthquake are, in fact, very clear and allow an accurate reconstruction of the faulting mechanism. We present here an accurate inversion of vertical deformation data obtained by ENVISAT images, aimed to give a detailed reconstruction of the fault geometry and slip distribu- tion. The resulting fault models are then used to compute, by a suitable theoretical model based on the elastic dislocation theory, the stress changes induced on the neigh- boring faults. The correlation of the subsequent mainshocks and aftershocks of the Abruzzo sequence with the volumes undergoing increasing Coulomb stress clearly evidence the triggering effect of coseismic stress changes on further seismicity. More- over, this analysis put in evidence which seismotectonic domains have been more heav- ily charged by stress released by the Abruzzo mainshocks. The most important faults significantly charged by the Abruzzo sequence belong to the Sulmona and Avezzano tectonic domains. Taking into account the average regional stress buildup in the area, the positive Coulomb stress changes caused by this earthquake can be seen as antici- pating the next earthquakes in the neighboring domains of 15–20 yr.
    Description: Published
    Description: 2340-2354
    Description: JCR Journal
    Description: restricted
    Keywords: Aquila Earthquakes of April 2009 ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Rapid evaluation of strong ground-shaking maps after moderate-to-large earthquakes is crucial to recognizing those areas where the largest damage and losses are expected. These maps play a fundamental role for emergency management. This is particularly important for areas having high seismic risk potential and covered by dense seismic networks. In near-real-time applications, ground-shaking maps are produced by integrating recorded data and estimates obtained by using ground-motion predictive equations, which assume point-source models. However, particularly for large earthquakes, improvements in the predictions of the peak ground motion can be obtained when fault extension and orientation are available. In fact, detailed source information allows one to use a more robust source-to-site distance metric compared with hypocentral distance. In this paper, a technique for estimating both fault extent (in terms of its surface projection) and dominant rupture direction is presented. This technique can be used in near-real-time ground-motion map calculation codes with the aim of improving ground-motion estimates with respect to a point-source model. The model parameters are estimated by maximizing a probability density function based on the residuals between observed and predicted peak-ground-motion quantities, the latter obtained by using predictive equations. The model space to be investigated is defined through a Bayesian approach, and it is explored by a grid-searching technique. The effectiveness of the proposed technique is demonstrated by offline numerical tests using data from three earthquakes occurring in different seismotectonic environments. The selected earthquakes are the 17 August 1999 Mw 7.5 Kocaeli (Turkey) earthquake, the 6 April 2009 Mw 6.3 L’Aquila (Italy) earthquake, and the 17 January 1994 Mw 6.7 Northridge (California) earthquake. The obtained results show that the proposed technique allows for fast and first order estimates of the fault extent and dominant rupture direction, which could be used to improve ground-shaking map calculations.
    Description: Published
    Description: 661-679
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: Source directivity ; ShakeMap ; L'Aquila earthquake ; Northridge earthquake ; Kocaeli earthquake ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...