ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Atmospheric physics
  • Humans
  • Remote sensing
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (2)
  • MDPI AG  (1)
  • 2010-2014  (3)
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1999
    Description: In this thesis the analysis of natural ice events is carried out based on direct measurements of ice-borne seismo-acoustic waves generated by ice fracturing processes. A major reason for studying this phenomenon is that this acoustic emission is a significant contributor to Arctic ocean ambient noise. Also the Arctic contains rich mineral and oil resources and in order to design mining facilities able to withstand the harsh environmental conditions, we need to have a better understanding of the processes of sea ice mechanics. The data analyzed in this thesis were collected during the Sea Ice Mechanics Initiative SIMI’94 experiment which was carried out in the spring of 1994 in the Central Arctic. One of the contributions of this thesis was the determination of the polarization characteristics of elastic waves using multicomponent geophone data. Polarization methods are well known in seismology, but they have never been used for ice event data processing. In this work one of the polarization methods so called Motion Product Detector method has been successfully applied for localization of ice events and determination of polarization characteristics of elastic waves generated by fracturing events. This application demonstrates the feasibility of the polarization method for ice event data processing because it allows one to identify areas of high stress concentration and "hot spots" in ridge building process. The identification of source mechanisms is based on the radiation patterns of the events. This identification was carried out through the analysis of the seismo-acoustic emission of natural ice events in the ice sheet. Previous work on natural ice event identification was done indirectly by analyzing the acoustic energy radiated into the water through coupling from elastic energy in the ice sheet. After identification of the events, the estimation of the parameters of fault processes in Arctic ice is carried out. Stress drop, seismic moment and the type of ice fracture are determined using direct near-field measurements of seismo-acoustic signals generated by ice events. Estimated values of fracture parameters were in good agreement with previous work for marginal ice zone. During data processing the new phenomenon was discovered: "edge waves", which are waves propagating back and forth along a newly opened ice lead. These waves exhibit a quasi-periodic behavior suggesting some kind of stick-slip generation mechanism somewhere along the length of the lead. The propagation characteristics of these waves were determined using seismic wavenumber estimation techniques. In the low frequency limit the dispersion can be modeled approximately by an interaction at the lead edges of the lowest order, antisymmetric modes of the infinite plate.
    Description: Support for this thesis was provided by Office of Naval Research.
    Keywords: Microseisms ; Seismology ; Underwater acoustics ; Remote sensing ; Sea ice ; Ice
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1989
    Description: In this thesis, a new active sonar imaging concept is explored using the principle of code-division and the simultaneous transmission of multiple coded signals. The signals are sixteen symbol, four-bit, non-linear, block Frequency-Shift Keyed (FSK) codes, each of which is projected into a different direction. Upon reception of the reflected waveform, each signal is separately detected and the results are inverted to yield an estimation of the spatial location of an object in three dimensions. The code-division sonar is particularly effective operating in situations where the phase of the transmitted signal is perturbed by the propagation media and the target Most imaging techniques presently used rely on preservation of the phase of the received signal over the dimension of the receiving array. In the code-division sonar, spatial resolution is obtained by using the combined effects of code-to-code rejection and the a-priori knowledge of which direction each code was transmitted. The coded signals are shown to be highly tolerable of phase distortion over the duration of the transmission. The result is a high-resolution, three-dimensional image, obtainable in a highly perturbative environment Additionally, the code-division sonar is capable of a high frame rate due to the simplicity of the processing required. Two algorithms are presented which estimate the spatial coordinates of an object in the ensonified aperture of the system, and the performance of the two is compared for different signal to noise levels. Finally, the concept of code-division imaging is employed in a series of experiments in which a code-division sonar was used to image objects under a variety of conditions. The results of the experiments are presented, showing the resolution capabilities of the system.
    Keywords: Sonar ; Remote sensing ; Imaging systems
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remote Sensing 6 (2014): 4660-4686, doi:10.3390/rs6064660.
    Description: Vegetation phenology plays an important role in regulating processes of terrestrial ecosystems. Dynamic ecosystem models (DEMs) require representation of phenology to simulate the exchange of matter and energy between the land and atmosphere. Location-specific parameterization with phenological observations can potentially improve the performance of phenological models embedded in DEMs. As ground-based phenological observations are limited, phenology derived from remote sensing can be used as an alternative to parameterize phenological models. It is important to evaluate to what extent remotely sensed phenological metrics are capturing the phenology observed on the ground. We evaluated six methods based on two vegetation indices (VIs) (i.e., Normalized Difference Vegetation Index and Enhanced Vegetation Index) for retrieving the phenology of temperate forest in the Agro-IBIS model. First, we compared the remotely sensed phenological metrics with observations at Harvard Forest and found that most of the methods have large biases regardless of the VI used. Only two methods for the leaf onset and one method for the leaf offset showed a moderate performance. When remotely sensed phenological metrics were used to parameterize phenological models, the bias is maintained, and errors propagate to predictions of gross primary productivity and net ecosystem production. Our results show that Agro-IBIS has different sensitivities to leaf onset and offset in terms of carbon assimilation, suggesting it might be better to examine the respective impact of leaf onset and offset rather than the overall impact of the growing season length.
    Keywords: Phenology ; Remote sensing ; Dynamic ecosystem model ; Agro-IBIS ; MODIS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...