ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2011. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 438 (2011): 267-283, doi:10.3354/meps09174.
    Description: The high variability in reproductive performance of North Atlantic right whales Eubalaena glacialis compared to southern right whales Eubalaena australis may reflect differences in lipid reserves. Amplitude-mode ultrasound was used to measure the thickness of right whale integument (epidermis and blubber, herein referred to as blubber thickness) in E. glacialis in the Bay of Fundy, Canada for 5 summer seasons and in E. australis off the South African coast for 2 austral winter seasons. E. glacialis had significantly thinner blubber layers (mean ±1 SD = 12.23 ± 2.16 cm, n = 172) than E. australis (16.13 ± 3.88 cm, n = 117), suggesting differing levels of nutrition between the 2 species. Blubber was thickest in females measured 3 to 6 mo prior to the start of pregnancy (E. glacialis), thinner during ­lactation (E. glacialis, E. australis) and then thicker with time after weaning (E. glacialis). These results suggest that lipids in blubber are used as energetic support for reproduction in female right whales. Blubber thickness increased in calves during suckling (E. glacialis, E. australis) but sub­sequently decreased after weaning (E. glacialis). Juvenile and adult male E. glacialis blubber thicknesses were compared between years of differing prey Calanus finmarchicus abundances (data from Pershing et al. 2005; ICES J Mar Sci 62:1511–1523); during a year of low prey abundance whales had significantly thinner blubber than during years of greater prey abundance. Taken together, these results suggest that blubber thickness is indicative of right whale energy balance and that the marked fluctuations in North Atlantic right whale reproduction have a nutritional component.
    Description: This project was made possible with funds provided by Massachusetts Environmental Trust, Office of Naval Research, National Marine Fisheries Service– National Oceanic and Atmospheric Administration, Northeast Consortium, Hussey Foundation, and National Research Foundation in South Africa.
    Keywords: Right whale ; Eubalaena ; Blubber thickness ; Body condition ; Reproduction ; Physiology ; Energy reserves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2012. This article is posted here by permission of Inter-Research. The definitive version was published in Marine Ecology Progress Series 459 (2012): 135-156, doi:10.3354/meps09675.
    Description: Mammalian reproduction is metabolically regulated; therefore, the endangered status and high variability in reproduction of North Atlantic right whales Eubalaena glacialis necessitate accurate assessments at sea of the nutritional condition of living individuals. Aerial photogrammetry was used to measure dorsal body width at multiple locations along the bodies of free-swimming right whales at different stages of the female reproductive cycle (E. glacialis) and during the initial months of lactation (mother and calf Eubalaena australis) to quantify changes in nutritional condition during energetically demanding events. Principal components analyses indicated that body width was most variable at 60% of the body length from the snout. Thoracic, abdominal and caudal body width of E. australis thinned significantly during the initial months of lactation, especially at 60% of body length from the snout, while their calves’ widths and width-to-length ratios increased. The body shape of E. glacialis that had been lactating for 8 mo was significantly thinner than non-lactating, non-pregnant E. glacialis. Body shape of E. glacialis measured in the eighth month of lactation was significantly thinner than that of E. australis in the first month, but did not differ from that of E. australis in the third and fourth months. Body width was comparable with diameter calculated from girth of carcasses. These results indicate that mother right whales rely on endogenous nutrient reserves to support the considerable energy expenditure during the initial months of lactation; therefore, photogrammetric measurements of body width, particularly at 60% of body length from the snout, are an effective way to quantitatively and remotely assess nutritional condition of living right whales.
    Description: This project was made possible with funds provided by the National Oceanic and Atmospheric Administration (NOAA), National Marine Fisheries Service, the Northeast Consortium, and the Hussey Foundation through the Ocean Life Institute at Woods Hole Oceanographic Institution.
    Keywords: Right whale ; Body shape ; Body condition ; Aerial photogrammetry ; Reproduction ; Energetics ; Eubalaena
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © Inter-Research, 2006. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 310 (2006): 263-270, doi:10.3354/meps310263.
    Description: The longfin squid Loligo pealeii is distributed widely in the NW Atlantic and is the target of a major fishery. A previous electrophoretic study of L. pealeii was unable to prove genetic differentiation, and the fishery has been managed as a single unit stock. We tested for population structure using 5 microsatellite loci. In early summer (June), when the squids had migrated inshore to spawn, we distinguished 4 genetically distinct stocks between Delaware and Cape Cod (ca. 490 km); a 5th genetic stock occurred in Nova Scotia and a 6th in the northern Gulf of Mexico. One of the summer inshore stocks did not show genetic differentiation from 2 of the winter offshore populations. We suggest that squids from summer locations overwinter in offshore canyons and that winter offshore fishing may affect multiple stocks of the inshore fishery. In spring, squids may segregate by genetic stock as they undertake their inshore migration, indicating an underlying mechanism of subpopulation recognition.
    Description: We acknowledge funding from WHOI Sea Grant NA16RG2273, the Massachusetts Environmental Trust (#98-04), and the Sholley Foundation.
    Keywords: Fisheries ; Spawning migration ; Microsatellites ; Population structure ; Population recognition ; Null alleles
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © Inter-Research, 2013. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 490 (2013): 267-284, doi:10.3354/meps10457.
    Description: Due to the seriously endangered status of North Pacific right whales Eubalaena japonica, an improved understanding of the environmental factors that influence the species’ distribution and occurrence is needed to better assess the effects of climate change and industrial activities on the population. Associations among right whales, zooplankton, and the physical environment were examined in the southeastern Bering Sea during the summers of 2008 and 2009. Sampling with nets, an optical plankton counter, and a video plankton recorder in proximity to whales as well as along cross-isobath surveys indicated that the copepod Calanus marshallae is the primary prey of right whales in this region. Acoustic detections of right whales from sonobuoys deployed during the cross-isobath surveys were strongly associated with C. marshallae abundance, and peak abundance estimates of C. marshallae in 2.5 m depth strata near a tagged right whale ranged as high as 106 copepods m-3. The smaller Pseudocalanus spp. was higher in abundance than C. marshallae in proximity to right whales, but significantly lower in biomass. High concentrations of C. marshallae occurred in both the surface and bottom layers of the highly stratified water column, but there was no evidence of diel vertical migration. Instead, occurrence of C. marshallae in the bottom layer was associated with elevated near-bottom light attenuance and chlorophyll fluorescence, suggesting C. marshallae may aggregate at depth while feeding on resuspended phytodetritus. Despite the occasional presence of strong horizontal gradients in hydrographic properties, no association was found between C. marshallae and either fronts or phytoplankton distribution.
    Description: This study was funded by the US Depart - ment of the Interior, Minerals Management Service (MMS; now Bureau of Ocean Energy Management), through Interagency Agreement No. M07RG13267 (AKC 063) with the US Department of Commerce, National Oceanic and Atmospheric Administration (NOAA), as part of the MMS Alaska Environmental Studies Program.
    Keywords: Eubalaena japonica ; Right whale ; Calanus marshallae ; Calanus glacialis ; Bering Sea ; Baleen whale ; Resuspension ; Phytodetritus
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...