ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2013. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Aquatic Microbial Ecology 71 (2013):141-153, doi:10.3354/ame01674.
    Description: Over the last few decades, molecular methods have vastly improved our ability to study the diversity of microbial communities. In molecular diversity surveys, the function of protists is often inferred from phylogeny. Yet these surveys are unable to distinguish between different trophic modes among closely related taxa. Here we present results from a culture-independent study linking bacterivory to the diversity of pelagic protists from 3 depths of a stratified mesotrophic lake. Bacteria were labeled with bromodeoxyuridine (BrdU) and added to lakewater samples; after incubation, total DNA was extracted from filtered samples. Part of the DNA extract was subjected to immunoprecipitation with anti-BrdU antibodies, and then both whole DNA and BrdU-labeled samples were analyzed using 454-pyrosequencing of the v9 region of 18S small subunit rRNA gene amplicons. The results show that a different community of protists exists at each depth, with limited overlap of taxonomic composition between depths. The community of BrdU-labeled protists, deemed putative bacterivores, is largely a subset of the community found in the whole DNA samples. Many of these BrdU-labeled taxa are poorly represented in GenBank and thus are probably rarely isolated and/or uncultured species. Several of the taxa identified as bacterivores are also phototrophs, highlighting the important role of mixotrophy among eukaryotic microbes. Definitive identity of functional traits among taxa requires careful experimentation, yet this method allows a first-pass assay of the trophic role of microbial eukaryotes from environmental samples.
    Description: This work was funded in part by NSF grants OPP-0838847 and OPP-0838955.
    Keywords: Molecular methods ; Microbial community ; Mixotrophy ; Bromodeoxyuridine ; Culture-independent ; Eukaryotic microbes ; Pyrosequencing ; Lake microbes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2009. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Aquatic Microbial Ecology 54 (2009): 269-277, doi:10.3354/ame01276.
    Description: Mixotrophic nanoflagellates (MNF) were quantified in plankton and sea ice of the Ross Sea, Antarctica, during austral spring. Tracer experiments using fluorescently labeled bacteria (FLB) were conducted to enumerate MNF and determine their contribution to total chloroplastidic and total bacterivorous nanoflagellates. Absolute abundances of MNF were typically 〈200 ml–1 in plankton assemblages south of the Polar Front, but they comprised 8 to 42% and 3 to 25% of bacterivorous nanoflagellates in the water column and ice cores, respectively. Moreover, they represented up to 10% of all chloroplastidic nanoflagellates in the water column when the prymnesiophyte Phaeocystis antarctica was blooming (up to 23% if P. antarctica, which did not ingest FLB, was excluded from calculations). In ice cores, MNF comprised 5 to 10% of chloroplastidic nanoflagellates. The highest proportions of MNF were found in some surface water samples and in plankton assemblages beneath ice, suggesting a potentially large effect as bacterial grazers in those locations. This study is the first to report abundances and distributions of mixotrophic flagellates in the Southern Ocean. The presence of MNF in every ice and water sample examined suggests that mixotrophy is an important alternative dietary strategy in this region.
    Description: This work was supported by NSF grant OPP-0125833 to D.A.C. and R.J.G.
    Keywords: Ross Sea ; Antarctica ; Mixotrophy ; Mixotrophic nanoflagellates ; Bacterivory ; Plankton ; Sea ice ; Fluorescently labeled bacteria
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © Inter-Research, 2006. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 310 (2006): 263-270, doi:10.3354/meps310263.
    Description: The longfin squid Loligo pealeii is distributed widely in the NW Atlantic and is the target of a major fishery. A previous electrophoretic study of L. pealeii was unable to prove genetic differentiation, and the fishery has been managed as a single unit stock. We tested for population structure using 5 microsatellite loci. In early summer (June), when the squids had migrated inshore to spawn, we distinguished 4 genetically distinct stocks between Delaware and Cape Cod (ca. 490 km); a 5th genetic stock occurred in Nova Scotia and a 6th in the northern Gulf of Mexico. One of the summer inshore stocks did not show genetic differentiation from 2 of the winter offshore populations. We suggest that squids from summer locations overwinter in offshore canyons and that winter offshore fishing may affect multiple stocks of the inshore fishery. In spring, squids may segregate by genetic stock as they undertake their inshore migration, indicating an underlying mechanism of subpopulation recognition.
    Description: We acknowledge funding from WHOI Sea Grant NA16RG2273, the Massachusetts Environmental Trust (#98-04), and the Sholley Foundation.
    Keywords: Fisheries ; Spawning migration ; Microsatellites ; Population structure ; Population recognition ; Null alleles
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © Inter-Research, 2009. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Aquatic Microbial Ecology 57 (2009): 279-310, doi:10.3354/ame01340.
    Description: Acquisition of phototrophy is widely distributed in the eukaryotic tree of life and can involve algal endosymbiosis or plastid retention from green or red origins. Species with acquired phototrophy are important components of diversity in aquatic ecosystems, but there are major differences in host and algal taxa involved and in niches of protists with acquired phototrophy in marine and freshwater ecosystems. Organisms that carry out acquired phototrophy are usually mixotrophs, but the degree to which they depend on phototrophy is variable. Evidence suggests that ‘excess carbon’ provided by acquired phototrophy has been important in supporting major evolutionary innovations that are crucial to the current ecological roles of these protists in aquatic ecosystems. Acquired phototrophy occurs primarily among radiolaria, foraminifera, ciliates and dinoflagellates, but is most ecologically important among the first three. Acquired phototrophy in foraminifera and radiolaria is crucial to their contributions to carbonate, silicate, strontium, and carbon flux in subtropical and tropical oceans. Planktonic ciliates with algal kleptoplastids are important in marine and fresh waters, whereas ciliates with green algal endosymbionts are mostly important in freshwaters. The phototrophic ciliate Myrionecta rubra can be a major primary producer in coastal ecosystems. Our knowledge of how acquired phototrophy influences trophic dynamics and biogeochemical cycles is rudimentary; we need to go beyond traditional concepts of ‘plant’ and ‘animal’ functions to progress in our understanding of aquatic microbial ecology. This is a rich area for exploration using a combination of classical and molecular techniques, laboratory and field research, and physiological and ecosystem modeling.
    Description: F.N. and C.dV were supported by a SAD grant SYMFORAD from the Région Bretagne (France) and the BioMarKs project funded by the European ERA-net program BiodivERsA.
    Keywords: Mixotrophy ; Radiolaria ; Foraminifera ; Ciliates ; Dinoflagellates ; Kleptoplastidy ; Karyoklepty ; Endosymbiosis ; Myrionecta rubra
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...