ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6)
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (6)
  • INGV  (3)
  • Elsevier Academic Press  (2)
  • Nature Publishing Group
  • 2010-2014  (6)
Collection
  • Articles  (6)
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: We present a conceptual model for the effective critical friction distance for fault zones of finite width. A numerical model with 1D elasticity is used to investigate implications of the model for shear traction evolution during dynamic and quasi-static slip. The model includes elastofrictional interaction of multiple, parallel slip surfaces, which obey rate and state friction laws with either Ruina (slip) or Dieterich (time) state evolution. A range of slip acceleration histories is investigated by imposing perturbations in slip velocity at the fault zone boundary and using radiation damping to solve the equations of motion. The model extends concepts developed for friction of bare surfaces, including the critical friction distance L, to fault zones of finite width containing wear and gouge materials. We distinguish between parameters that apply to a single frictional surface, including L and the dynamic slip weakening distance do, and those that represent slip for the entire fault zone, which include the effective critical friction distance, Dcb, and the effective dynamic slip weakening distance Do. A scaling law for Dcb is proposed in terms of L and the fault zone width. Earthquake source parameters depend on net slip across a fault zone and thus scale with Dcb, Do, and the slip at yield strength Da. We find that Da decreases with increasing velocity jump size for friction evolution via the Ruina law, whereas it is independent of slip acceleration rate for the Dieterich law. For both laws, Da scales with fault zone width and shear traction exhibits prolonged hardening before reaching a yield strength. The parameters Dcb and Do increase roughly linearly with fault zone thickness. This chapter and a companion chapter in the volume discuss the problem of reconciling laboratory measurements of the critical friction distance with theoretical and field-based estimates of the effective dynamic slip weakening distance.
    Description: Published
    Description: 135-162
    Description: 3.1. Fisica dei terremoti
    Description: open
    Keywords: Earthquake dynamics ; critical slip distance ; Computational seismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We discuss physical models for the characteristic slip weakening distance Dc of earthquake rupture with particular focus on scaling relations between Dc and other earthquake source parameters. We use inversions of seismic data to investigate the breakdown process, dynamic weakening, and measurement of Dc. We discuss limitations of such measurements. For studies of breakdown processes and slip weakening, it is important to analyze time intervals shorter than the slip duration and those for which slip velocity is well resolved. We analyze the relationship between Dc and the parameters Dc' and Da, which are defined as the slip at the peak slip velocity and the peak traction, respectively. We discuss approximations and limitations associated with inferring the critical slip weakening distance from Dc'. Current methods and available seismic data introduce potential biases in estimates of Dc and its scaling with seismic slip due to the limited frequency bandwidth considered during typical kinematic inversions. Many published studies infer erroneous scaling between Dc and final slip due to inherent limitations, implicit assumptions, and poor resolution of the seismic inversions. We suggest that physical interpretations of Dc based on its measurement for dynamic earthquake rupture should be done with caution and the aid of accurate numerical simulations. Seismic data alone cannot, in general, be used to infer physical processes associated with Dc, although the estimation of breakdown work is reliable. We emphasize that the parameters Tacc and peak slip velocity contain the same dynamic information as Dc and breakdown stress drop. This further demonstrates that inadequate resolution and limited frequency bandwidth impede to constrain dynamic rupture parameters.
    Description: Published
    Description: 163-186
    Description: 3.1. Fisica dei terremoti
    Description: open
    Keywords: Earthquake dynamics ; slip weakening distance ; Computational seismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: (extended abstract)
    Description: INGV, Regione Sicilia, Ministero Sviluppo Economico
    Description: Published
    Description: Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Sicily
    Description: open
    Keywords: Geodynamics ; Volcano-seismic correlation ; Seismic and volcanic risk ; Earth rotation and volcano-seismic events ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.02. Earth rotation ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-07
    Description: In questo lavoro viene descritta l’installazione di una rete mobile nell’area dei Monti Nebrodi in seguito all’evento del 23-06-2011 di Ml = 4.6 e come tale intervento ha contribuito al miglioramento della localizzazione delle sorgenti sismiche soprattutto nella determinazione della profondità degli eventi. Verranno anche presentati i risultati delle localizzazioni ottenute attraverso l’integrazione dei dati acquisiti durante questa campagna, con quelli della rete sismica permanente dell’INGV-Osservatorio Etneo ( INGV -OE).
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: 1-24
    Description: 4IT. Banche dati
    Description: N/A or not JCR
    Description: open
    Keywords: Rete Sismica Mobile ; Nebrodi ; Sciame ; Localizzazione ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-03
    Description: (extended abstract)
    Description: INGV, Regione Sicilia, Ministero Sviluppo Economico
    Description: Published
    Description: Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Sicily
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 5.9. Formazione e informazione
    Description: open
    Keywords: Expanding Earth ; Global Geodynamics ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The 2011 Tohoku-oki (Mw 9.1) earthquake is so far the best-observed megathrust rupture, which allowed the collection of unprecedented offshore data. The joint inversion of tsunami waveforms (DART buoys, bottom pressure sensors, coastal wave gauges, and GPS-buoys) and static geodetic data (onshore GPS, seafloor displacements obtained by a GPS/acoustic combination technique), allows us to retrieve the slip distribution on a non-planar fault. We show that the inclusion of near-source data is necessary to image the details of slip pattern (maximum slip ,48 m, up to ,35 m close to the Japan trench), which generated the large and shallow seafloor coseismic deformations and the devastating inundation of the Japanese coast. We investigate the relation between the spatial distribution of previously inferred interseismic coupling and coseismic slip and we highlight the importance of seafloor geodetic measurements to constrain the interseismic coupling, which is one of the key-elements for long-term earthquake and tsunami hazard assessment.
    Description: Published
    Description: 385
    Description: 3.1. Fisica dei terremoti
    Description: N/A or not JCR
    Description: restricted
    Keywords: Tohoku ; Subduction ; Tsunami ; Inverse problem ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...