ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (16)
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (16)
  • Seismological Society of America  (10)
  • INGV  (3)
  • Copernicus Publications  (2)
  • Nature Publishing Group
  • 2010-2014  (16)
Collection
  • Articles  (16)
Source
Keywords
Years
Year
  • 11
    Publication Date: 2017-04-04
    Description: The seismic activity associated with the catastrophic southern Italy earth- quake was monitored by 11 seismic stations operating before this event, within an epicentral distance of 200 km, and by 32 additional short-period seismom- eters installed soon after the main shock. The hypocenter of this event was located at 40°46'N and 15°18'E, at 16 km depth. The fault-plane solution reveals normal faulting, with tensile axis dipping 18 ° and oriented orthogonal to the axis of the Apennines chain. This mechanism is in good agreement with the stress pattern inferred from some previous earthquakes and the local seismotectonics. The hypocenter locations of more than 600 aftershocks, with local magnitudes greater than 2.4, show a pronounced alignment extending for about 70 km, oriented north 120 ° and scattered laterally less than 15 km. These events are mostly concentrated between 8 and 16 km depth. A cluster of aftershocks occurred close to the hypocenter of the main shock covering a region elongated 25 km which corresponds also to the highly damaged area. No significant spreading of the aftershock area with time is observed, but one of the events with higher magnitude (M, = 4.8, 14 February 1981) is displaced 20 km NW from the tip of the aftershock region. The time evolution of the number of aftershocks fits well Omorrs hyperbolic law with a decay coeffcient of 1.07 __. 0.06. The possibility of a future delayed multiple sequence of large events, as already observed in the past along the central and southern Apennines, is discussed. In particular, a relatively high seismic potential seems to exist along the northern boundary of the 1980 rupture segment.
    Description: Published
    Description: 187-200
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Irpinia Earthquake ; Aftershock sequences ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-03
    Description: (extended abstract)
    Description: INGV, Regione Sicilia, Ministero Sviluppo Economico
    Description: Published
    Description: Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Sicily
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 5.9. Formazione e informazione
    Description: open
    Keywords: Expanding Earth ; Global Geodynamics ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: On May 20th, 2012, an ML 5.9 earthquake (Table 1) occurred near the town of Finale Emilia, in the Central Po Plain, Northern Italy (Figure 1). The mainshock caused 7 casualties and the collapse of several historical buildings and industrial sheds. The earthquake sequence continued with diminishing aftershock magnitudes until May 29th, when an ML 5.8 earthquake occurred near the town of Mirandola, ~12 km WSW of the mainshock (Scognamiglio et al., 2012). This second mainshock started a new aftershock sequence in this area, and increased structural damage and collapses, causing 19 more casualties and increasing to 15.000 the number of evacuees. Shortly after the first mainshock, the Department of Civil Protection (DPC) activated the Italian Space Agency (ASI), which provided post-seismic SAR Interferometry data coverage with all 4 COSMO-SkyMed SAR satellites. Within the next two weeks, several SAR Interferometry (InSAR) image pairs were processed by the INGV-SIGRIS system (Salvi et al., 2012), to generate displacement maps and preliminary source models for the emergency management. These results included continuous GPS site displacement data, from private and public sources, located in and around the epicentral area. In this paper we present the results of the geodetic data modeling, identifying two main fault planes for the Emilia seismic sequence and computing the corresponding slip distributions. We discuss the implication of this seismic sequence on the activity of the frontal part of the Northern Apennine accretionary wedge by comparing the co-seismic data with the long term (geological) and present day (GPS) velocity fields.
    Description: Published
    Description: 645-655
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.9. Rete GPS nazionale
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake ; CFF analysis ; Tectonic ; geodynamic ; Seismic source ; Northern apennine (Italy) ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: The 2011 Tohoku-oki (Mw 9.1) earthquake is so far the best-observed megathrust rupture, which allowed the collection of unprecedented offshore data. The joint inversion of tsunami waveforms (DART buoys, bottom pressure sensors, coastal wave gauges, and GPS-buoys) and static geodetic data (onshore GPS, seafloor displacements obtained by a GPS/acoustic combination technique), allows us to retrieve the slip distribution on a non-planar fault. We show that the inclusion of near-source data is necessary to image the details of slip pattern (maximum slip ,48 m, up to ,35 m close to the Japan trench), which generated the large and shallow seafloor coseismic deformations and the devastating inundation of the Japanese coast. We investigate the relation between the spatial distribution of previously inferred interseismic coupling and coseismic slip and we highlight the importance of seafloor geodetic measurements to constrain the interseismic coupling, which is one of the key-elements for long-term earthquake and tsunami hazard assessment.
    Description: Published
    Description: 385
    Description: 3.1. Fisica dei terremoti
    Description: N/A or not JCR
    Description: restricted
    Keywords: Tohoku ; Subduction ; Tsunami ; Inverse problem ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: Positive thermal anomalies about one month before the 3 September 2010 Mw Combining double low line 7.1 New Zealand earthquake and " coincidental" quasi-synchronous fluctuations of GPS displacement were reported. Whether there were similar phenomena associated with the aftershocks? To answer it, the following was investigated: multiple parameters including surface and near-surface air temperature, surface latent heat flux, GPS displacement and soil moisture, using a long-term statistical analysis method. We found that local thermal and deformation anomalies appeared quasi-synchronously in three particular tectonic zones, not only about one month before the mainshock, but also tens of days before the 21 February 2011 Mw Combining double low line 6.3 aftershock, and that the time series of soil moisture on the epicenter pixel had obvious peaks on most of the anomalous days. Based on local tectonic geology, hydrology and meteorology, the particular lithosphere-coversphere-atmosphere coupling mode is interpreted and four mechanisms (magmatic-hydrothermal fluids upwelling, soil moisture increasing, underground pore gases leaking, and positive holes activating and recombining) are discussed.
    Description: Published
    Description: 1059–1072
    Description: 1.10. TTC - Telerilevamento
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: aftershock ; air temperature ; earthquake event ; earthquake precursor ; earthquake prediction ; GPS ; latent heat flux ; soil moisture ; statistical analysis ; temperature anomaly ; New Zealand ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: With the aim of obtaining a deeper knowledge of the physical phenomena associated with the 2009 L’Aquila (Central Italy) seismic sequence, culminating with a Mw = 6.3 earthquake on 6 April 2009, and possibly of identifying some kind of earthquake-related magnetic or geoelectric anomaly, we analyse the geomagnetic field components measured at the magnetic observatory of L’Aquila and their variations in time. In particular, trends of magnetic transfer functions in the years 2006–2010 are inspected. They are calculated from the horizontal to vertical magnetic component ratio in the frequency domain, and are very sensitive to deep and lateral geoelectric characteristics of the measurement site. Entropy analysis, carried out from the transfer functions with the so called transfer function entropy, points out clear temporal burst regimes of a few distinct harmonics preceding the main shock of the seismic sequence. A possible explanation is that they could be related to deep fluid migrations and/or to variations in the micro-/meso-fracturing that affected significantly the conductivity (ordered/disordered) distribution in a large lithospheric volume under the seismogenic layer below L’Aquila area. This interpretation is also supported by the analysis of hypocentres depths before the main shock occurrence.
    Description: Published
    Description: 401-409
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 3.1. Fisica dei terremoti
    Description: 3.4. Geomagnetismo
    Description: JCR Journal
    Description: open
    Keywords: earthquake event ; earthquake hypocenter ; earthquake magnitude ; entropy ; fluid mechanics ; geomagnetic field ; seismicity ; Abruzzi ; Italy ; L'Aquila ; Aquila ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...