ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (74,904)
  • Copernicus  (47,172)
  • International Union of Crystallography  (27,732)
  • 2010-2014  (74,904)
  • Geosciences  (74,904)
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
Collection
  • Articles  (74,904)
Years
Year
  • 1
    Publication Date: 2014-12-24
    Description: Validation of the k -filtering technique for a signal composed of random-phase plane waves and non-random coherent structures Geoscientific Instrumentation, Methods and Data Systems, 3, 247-254, 2014 Author(s): O. W. Roberts, X. Li, and L. Jeska Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame) and those described as being structure-like (advected by the plasma bulk velocity). Typically with single-spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed for temporal and spatial changes to be resolved, using techniques such as k filtering. While this technique does not assume Taylor's hypothesis it requires both weak stationarity of the time series and that the fluctuations can be described by a superposition of plane waves with random phases. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random-phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.
    Print ISSN: 2193-0856
    Electronic ISSN: 2193-0864
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-24
    Description: Designing optimal greenhouse gas observing networks that consider performance and cost Geoscientific Instrumentation, Methods and Data Systems Discussions, 4, 705-749, 2014 Author(s): D. D. Lucas, C. Yver Kwok, P. Cameron-Smith, H. Graven, D. Bergmann, T. P. Guilderson, R. Weiss, and R. Keeling Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototype network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH 2 FCF 3 , HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.
    Electronic ISSN: 2193-0872
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-24
    Description: Assessing the prospective resource base for enhanced geothermal systems in Europe Geothermal Energy Science, 2, 55-71, 2014 Author(s): J. Limberger, P. Calcagno, A. Manzella, E. Trumpy, T. Boxem, M. P. D. Pluymaekers, and J.-D. van Wees In this study the resource base for EGS (enhanced geothermal systems) in Europe was quantified and economically constrained, applying a discounted cash-flow model to different techno-economic scenarios for future EGS in 2020, 2030, and 2050. Temperature is a critical parameter that controls the amount of thermal energy available in the subsurface. Therefore, the first step in assessing the European resource base for EGS is the construction of a subsurface temperature model of onshore Europe. Subsurface temperatures were computed to a depth of 10 km below ground level for a regular 3-D hexahedral grid with a horizontal resolution of 10 km and a vertical resolution of 250 m. Vertical conductive heat transport was considered as the main heat transfer mechanism. Surface temperature and basal heat flow were used as boundary conditions for the top and bottom of the model, respectively. If publicly available, the most recent and comprehensive regional temperature models, based on data from wells, were incorporated. With the modeled subsurface temperatures and future technical and economic scenarios, the technical potential and minimum levelized cost of energy (LCOE) were calculated for each grid cell of the temperature model. Calculations for a typical EGS scenario yield costs of EUR 215 MWh −1 in 2020, EUR 127 MWh −1 in 2030, and EUR 70 MWh −1 in 2050. Cutoff values of EUR 200 MWh −1 in 2020, EUR 150 MWh −1 in 2030, and EUR 100 MWh −1 in 2050 are imposed to the calculated LCOE values in each grid cell to limit the technical potential, resulting in an economic potential for Europe of 19 GW e in 2020, 22 GW e in 2030, and 522 GW e in 2050. The results of our approach do not only provide an indication of prospective areas for future EGS in Europe, but also show a more realistic cost determined and depth-dependent distribution of the technical potential by applying different well cost models for 2020, 2030, and 2050.
    Print ISSN: 2195-4771
    Electronic ISSN: 2195-478X
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-24
    Description: Reliability, sensitivity, and uncertainty of reservoir performance under climate variability in basins with different hydrogeologic settings Hydrology and Earth System Sciences Discussions, 11, 13891-13929, 2014 Author(s): C. Mateus and D. Tullos This study investigated how reservoir performance varied across different hydrogeologic settings and under plausible future climate scenarios. The study was conducted in the Santiam River basin, OR, USA, comparing the North Santiam basin (NSB), with high permeability and extensive groundwater storage, and the South Santiam basin (SSB), with low permeability, little groundwater storage, and rapid runoff response. We applied projections of future temperature and precipitation from global climate models to a rainfall-runoff model, coupled with a formal Bayesian uncertainty analysis, to project future inflow hydrographs as inputs to a reservoir operations model. The performance of reservoir operations was evaluated as the reliability in meeting flood management, spring and summer environmental flows, and hydropower generation objectives. Despite projected increases in winter flows and decreases in summer flows, results suggested little evidence of a response in reservoir operation performance to a warming climate, with the exception of summer flow targets in the SSB. Independent of climate impacts, historical prioritization of reservoir operations appeared to impact reliability, suggesting areas where operation performance may be improved. Results also highlighted how hydrologic uncertainty is likely to complicate planning for climate change in basins with substantial groundwater interactions.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-24
    Description: Millennial meridional dynamics of the Indo-Pacific Warm Pool during the last termination Climate of the Past, 10, 2253-2261, 2014 Author(s): L. Lo, C.-C. Shen, K.-Y. Wei, G. S. Burr, H.-S. Mii, M.-T. Chen, S.-Y. Lee, and M.-C. Tsai To develop an in-depth understanding of the natural dynamics of the Indo-Pacific Warm Pool (IPWP) during the last deglaciation, stacked north- (N-) and south-IPWP (S-IPWP) thermal and hydrological records over the past 23–10.5 ka were built using planktonic foraminiferal geochemistry data from a new core, MD05-2925 (9.3° S, 151.5° E water depth 1661 m) in the Solomon Sea and eleven previous sites. Ice-volume-corrected seawater δ 18 O (δ 18 O SW-IVC ) stacks show that S-IPWP δ 18 O SW-IVC values are indistinguishable from their northern counterparts through glacial time. The N-IPWP SST (sea surface temperature) stacked record features an increasing trend of 0.5 °C ka −1 since 18 ka. Its S-IPWP counterpart shows an earlier onset of temperature increase at 19 ka and a strong teleconnection to high-latitude climate in the Southern Hemisphere. Meridional SST gradients between the N- and S-IPWP were 1–1.5 °C during the Bølling/Allerød period and 1 °C during both Heinrich event 1 and the Younger Dryas, due to a warmer S-IPWP. A warm S-IPWP during the cold events could weaken the southern hemispheric branch of the Hadley cell and reduce precipitation in the Asian monsoon region.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-24
    Description: Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013 The Cryosphere Discussions, 8, 6271-6301, 2014 Author(s): J. Wuite, H. Rott, M. Hetzenecker, D. Floricioiu, J. De Rydt, G. H. Gudmundsson, T. Nagler, and M. Kern We use repeat-pass SAR data to produce detailed maps of surface motion covering the glaciers draining into the former Larsen B ice shelf, Antarctic Peninsula, for different epochs between 1995 and 2013. We combine the velocity maps with estimates of ice thickness to analyze fluctuations of ice discharge. The collapse of the central and northern sections of the ice shelf in 2002 led to a near-immediate acceleration of tributary glaciers as well as of the remnant ice shelf in Scar Inlet. Velocities of the glaciers discharging directly into the ocean remain to date well above the velocities of the pre-collapse period. The response of individual glaciers differs and velocities show significant temporal fluctuations, implying major variations in ice discharge and mass balance as well. Due to reduced velocity and ice thickness the ice discharge of Crane Glacier decreased from 5.02 Gt a −1 in 2007 to 1.72 Gt a −1 in 2013, whereas Hektoria and Green glaciers continue to show large temporal fluctuations in response to successive stages of frontal retreat. The velocity on Scar Inlet ice shelf increased two- to three fold since 1995, with the largest increase in the first years after the break-up of the main section of Larsen B. Flask and Leppard glaciers, the largest tributaries to Scar Inlet ice shelf, accelerated. In 2013 their discharge was 38%, respectively 45%, higher than in 1995.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-24
    Description: Ice and AIS: ship speed data and sea ice forecasts in the Baltic Sea The Cryosphere, 8, 2409-2418, 2014 Author(s): U. Löptien and L. Axell The Baltic Sea is a seasonally ice-covered marginal sea located in a densely populated area in northern Europe. Severe sea ice conditions have the potential to hinder the intense ship traffic considerably. Thus, sea ice fore- and nowcasts are regularly provided by the national weather services. Typically, the forecast comprises several ice properties that are distributed as prognostic variables, but their actual usefulness is difficult to measure, and the ship captains must determine their relative importance and relevance for optimal ship speed and safety ad hoc. The present study provides a more objective approach by comparing the ship speeds, obtained by the automatic identification system (AIS), with the respective forecasted ice conditions. We find that, despite an unavoidable random component, this information is useful to constrain and rate fore- and nowcasts. More precisely, 62–67% of ship speed variations can be explained by the forecasted ice properties when fitting a mixed-effect model. This statistical fit is based on a test region in the Bothnian Sea during the severe winter 2011 and employs 15 to 25 min averages of ship speed.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-24
    Description: A comparison of interpolation methods on the basis of data obtained from a bathymetric survey of Lake Vrana, Croatia Hydrology and Earth System Sciences Discussions, 11, 13931-13979, 2014 Author(s): A. Šiljeg, S. Lozić, and S. Šiljeg The bathymetric survey of Lake Vrana included a wide range of activities that were performed in several different stages, in accordance with the standards set by the International Hydrographic Organization. The survey was conducted using an integrated measuring system which consisted of three main parts: a single-beam sonar Hydrostar 4300, GPS devices Ashtech Promark 500 – base, and a Thales Z-Max – rover. A total of 12 851 points were gathered. In order to find continuous surfaces necessary for analysing the morphology of the bed of Lake Vrana, it was necessary to approximate values in certain areas that were not directly measured, by using an appropriate interpolation method. The main aims of this research were as follows: to compare the efficiency of 16 different interpolation methods, to discover the most appropriate interpolators for the development of a raster model, to calculate the surface area and volume of Lake Vrana, and to compare the differences in calculations between separate raster models. The best deterministic method of interpolation was ROF multi-quadratic, and the best geostatistical, ordinary cokriging. The mean quadratic error in both methods measured less than 0.3 m. The quality of the interpolation methods was analysed in 2 phases. The first phase used only points gathered by bathymetric measurement, while the second phase also included points gathered by photogrammetric restitution. The first bathymetric map of Lake Vrana in Croatia was produced, as well as scenarios of minimum and maximum water levels. The calculation also included the percentage of flooded areas and cadastre plots in the case of a 2 m increase in the water level. The research presented new scientific and methodological data related to the bathymetric features, surface area and volume of Lake Vrana.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-24
    Description: Black carbon reduction will weaken the aerosol net cooling effect Atmospheric Chemistry and Physics Discussions, 14, 33117-33141, 2014 Author(s): Z. L. Wang, H. Zhang, and X. Y. Zhang Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m −2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7–2.0 W m −2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-24
    Description: Characterization of the boundary layer at Dome C (East Antarctica) during the OPALE summer campaign Atmospheric Chemistry and Physics Discussions, 14, 33089-33116, 2014 Author(s): H. Gallée, S. Preunkert, S. Argentini, M. M. Frey, C. Genthon, B. Jourdain, I. Pietroni, G. Casasanta, H. Barral, E. Vignon, and M. Legrand The regional climate model MAR was run for the region of Dome C located on the East Antarctic plateau, during Antarctic summer 2011–2012, in order to refine our understanding of meteorological conditions during the OPALE observation campaign. A very high vertical resolution is set up in the lower troposphere, with a grid spacing of roughly 2 m. Comparisons are made with observed temperatures and winds near the surface and from a 45 m high tower as well as sodar and radiation data. MAR is generally in very good agreement with the observations but sometimes underestimates cloud formation, leading to an underestimation of the simulated downward long-wave radiation. Absorbed short-wave radiation may also be slightly overestimated due to an underestimation of the snow albedo and this influences the surface energy budget and atmospheric turbulence. Nevertheless the model provides sufficiently reliable information that represent key parameters when discussing the representativeness of chemical measurements made nearby the ground surface during field campaigns conducted at the Concordia site located at Dome C (3233 m a.s.l.).
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...