ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects  (5)
  • Copernicus  (2)
  • Istituto Nazionale di Geofisica e Vulcanologia  (2)
  • Geoitalia - Federazione Italiana di Scienze della Terra  (1)
  • 2010-2014  (5)
Collection
Years
Year
  • 1
    Publication Date: 2021-06-07
    Description: The La Fossa cone of Vulcano Island (Aeolian Archipelago, Italy) is a closed conduit volcano. Today, Vulcano Island is characterized by sulfataric activity, with a large fumarolic field that is mainly located in the summit area. A scanning differential optical absorption spectroscopy instrument designed by the Optical Sensing Group of Chalmers University of Technology in Göteborg, Sweden, was installed in the framework of the European project "Network for Observation of Volcanic and Atmospheric Change", in March 2008. This study presents the first dataset of SO2 plume fluxes recorded for a closed volcanic system. Between 2008 and 2010, the SO2 fluxes recorded showed average values of 12 t.d—1 during the normal sulfataric activity of Vulcano Island, with one exceptional event of strong degassing that occurred between September and December, 2009, when the SO2 emissions reached up to 100 t.d—1.
    Description: Published
    Description: 301-308
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: open
    Keywords: SO2 ; Differential optical absorption spectroscopy ; Vulcano Island ; Network for Observation of Volcanic and Atmospheric Change ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Methane plays an important role in the Earth’s atmospheric chemistry and radiative balance being the second most important greenhouse gas after carbon dioxide. Methane is released to the atmosphere by a wide number of sources, both natural and anthropogenic, with the latter being twice as large as the former (IPCC, 2007). It has recently been established that significant amounts of geological methane, produced within the Earth’s crust, are currently released naturally into the atmosphere (Etiope, 2004). Active or recent volcanic/geothermal areas represent one of these sources of geological methane. But due to the fact that methane flux measurements are laboratory intensive, very few data have been collected until now and the contribution of this source has been generally indirectly estimated (Etiope et al., 2007). The Greek territory is geodynamically very active and has many volcanic and geothermal areas. Here we report on methane flux measurements made at two volcanic/geothermal systems along the South Aegean volcanic arc: Sousaki and Nisyros. The former is an extinct volcanic area of Plio-Pleistocene age hosting nowadays a low enthalpy geothermal field. The latter is a currently quiescent active volcanic system with strong fumarolic activity due to the presence of a high enthalpy geothermal system. Both systems have gas manifestations that emit significant amounts of hydrothermal methane and display important diffuse carbon dioxide emissions from the soils. New data on methane isotopic composition and higher hydrocarbon contents point to an abiogenic origin of the hydrothermal methane in the studied systems. Measured methane flux values range from –48 to 29,000 (38 sites) and from –20 to 1100 mg/mˆ2/d (35 sites) at Sousaki and Nisyros respectively. At Sousaki measurement sites covered almost all the degassing area and the diffuse methane output can be estimated in about 20 t/a from a surface of about 10,000 mˆ2. At Nisyros measurements covered the Stephanos and Kaminakia areas, which represent only a part of the entire degassing area. The two areas show very different methane degassing pattern with latter showing much higher flux values. Methane output can be estimated in about 0.25 t/a from an area of about 30,000 mˆ2 at Stephanos and about 1 t/a from an area of about 20,000 mˆ2 at Kaminakia. The total output from the entire geothermal system of Nisyros probably should not exceed 2 t/a.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: methane output ; diffuse degassing ; volcanic/hydrothermal systems ; Greece ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: A biomonitoring survey, above tree line level, using two endemic species (Senecio aethnensis and Rumex aethnensis) was performed on Mt. Etna, in order to evaluate the dispersion and the impact of volcanic atmospheric emissions. Samples of leaves were collected in summer 2008 from 30 sites in the upper part of the volcano (1500- 3000 m a.s.l). Acid digestion of samples was carried out with a microwave oven, and 44 elements were analyzed by using plasma spectrometry (ICP-MS and ICP-OES). The highest concentrations of all investigated elements were found in the samples collected closest to the degassing craters, and in the downwind sector, confirming that the eastern flank of Mt. Etna is the most impacted by volcanic emissions. Leaves collected along two radial transects from the active vents on the eastern flank, highlight that the levels of metals decrease one or two orders of magnitude with increasing distance from the source. This variability is higher for volatile elements (As, Bi, Cd, Cs, Pb, Sb, Tl) than for more refractory elements (Al, Ba, Sc, Si, Sr, Th, U). The two different species of plants do not show significant differences in the bioaccumulation of most of the analyzed elements, except for lanthanides, which are systematically enriched in Rumex leaves. The high concentrations of many toxic elements in the leaves allow us to consider these plants as highly tolerant species to the volcanic emissions, and suitable for biomonitoring researches in the Mt. Etna area.
    Description: Published
    Description: Vienna, Austria
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Mt. Etna ; biomonitoring ; Trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Biomonitoring may be defined as the use of organisms and biomaterials (biomonitors) to obtain informations on certain characteristics of a particular medium (atmosphere, hydrosphere etc.). In particular, mosses accumulate large amounts of trace metals, making them good bioaccumulators to estimate atmospheric pollution. The moss-bags technique, introduced in the early 1970’, has become very popular. Such active biomonitoring technique is particularly useful in highly polluted areas and has been extensively used in industrial and/or urban areas to examine deposition patterns and to recognize point sources of pollution. The main objective of this study, which represents the first application of the moss-bags technique in an active volcanic area, was to test its efficacy in such environment. Complementary objectives were: to determine the different behavior and the geographic dispersion of volcanogenic elements emitted from Mt. Etna; to check the usefulness of a simpler analytical techniques (leaching instead of mineralization of the moss samples). A mixture of Sphagnum species was picked in a clean area, treated in laboratory (washed, dried and packed) and exposed in field for 1 month. Sites were chosen considering the prevailing wind at Mt. Etna’s summit. Milled samples were analyses for major and trace elements concentrations, after microwave digestion (HNO3 + H2O2), by ICP-MS and ICP-OES techniques. The same elements were also analyzed after simple leaching with deionized water (1/50 weight ratio for 4 hours). Leaching solutions were also analyzed by IC for F, Cl and SO4. Analyses clearly showed the efficacy of the moss-bags technique also in this peculiar environment. Several elements were strongly enriched in the mosses exposed to the volcanic emissions. The highest enrichment was measured close to the summit crater, but evidences of metals bioaccumulation were also found in down wind sites, at several km from the volcanic source. The accumulation factor (exposed/unexposed moss) allowed us to distinguish a group of elements (Tl, Bi, Se, Cu, As, Cd, S), which are highly mobile in the high temperature volcanic environment. Also alkali metals showed a significant increase in their concentrations, probably because of their affinity for the halide species carried by the volcanic plume. Also the simple and cheap leaching technique gave important indications on the plume dispersion pattern, especially for highly volatile elements (F, Cl, S, Tl).
    Description: Published
    Description: Torino, Italia
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: biomonitoring ; moss-bags ; trace elements ; Etna ; Volcanic emissions ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In this paper are shown the results obtained from Geometric High Precision Levelling survey performed at Ischia Island in June 2010. The measures have been carried out on the whole network of the island further expanded by increasing of the benchmarks and the establishment of new lines. The compensated height for each benchmark (Bm) are referred to Bm 1 located at Ischia harbour, were compared to those obtained in previous Levelling survey of 2003. The results show significant ground subsidence of different entities affecting various areas of the island. In addition, a further comparison with the measurements performed in 1987 confirms the existence of such differential movements characterised by subsidence velocity constant over time. At last, we found a good agreement between levelling and GPS velocities, calculated in time span 1997-2003.
    Description: Published
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: N/A or not JCR
    Description: open
    Keywords: Leveling, Ischia Island, Epomeo ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...