ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring  (4)
  • IEEE  (2)
  • Wiley  (2)
  • American Physical Society
  • International Union of Crystallography (IUCr)
  • Public Library of Science
  • 2010-2014  (4)
Collection
Years
Year
  • 1
    Publication Date: 2020-11-18
    Description: The anomaly of SLHF, which is a key component of the Earth's energy balance and represents the heat flux from the Earth's surface to the atmosphere associated with evaporation or transpiration of water on the surface and subsequent condensation of water vapor in the troposphere, has been widely reported as a possible earthquake precursor. The causes are generally attributed to the increase in infrared thermal (IR) temperature and the air ionization produced by increased emanation of radon from the Earth's crust. In this paper, the theoretical analysis and case study show that there is close relationship between soil moisture and SLHF anomalies. For inland earthquakes, the increase of soil moisture due to the rising of groundwater level will bring with higher potential evaporation, leading to the increase of latent heat flux. Further study with more accurate soil moisture product after the new satellite mission will help us to better understand the influence of soil moisture on SLHF variation and their relations with seismogenic process.
    Description: Published
    Description: Munich, Germany
    Description: 1.10. TTC - Telerilevamento
    Description: 3.1. Fisica dei terremoti
    Description: restricted
    Keywords: earthquake anomaly recognition (EAR) ; SLHF ; soil moisture lithosphere-coversphere-atmosphere (LCA) coupling ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-18
    Description: The GEOSS under construction is providing space-,aero-,ground/sea-based multiple observations on planet Earth for the seismogenic process monitoring and earthquake precaution. The stress enhancement and energy accumulation in seismic activity area change locally the physical parameters of lithosphere with the developing of a series of effects that can comprise most of the following ones: initial cracks, the fracturing of rockmass, the changing of electromagnetic properties, the decreasing of dielectric constant, the re-activation of P-holes, the leaking of poregas, and the rise of water-level. The physical states of coversphere and atmosphere are to be affected due to the lithosphere-coversphere-atmosphere (LCA) coupling, and the signals from the underground, surface, and atmosphere to satellites are to be changed with parameter anomaly. We suggested that the LCA coupling is important for understanding GEOSS observations, especially for earthquake anomaly recognition (EAR). Using deviation-time-space-thermal (DTS-T) method for EAR, three recent major earthquakes (2009 Italy L'Aquila earthquake, 2010 China Yushu earthquake and 2010-2011 New Zealand earthquake sequence) are taken as typical cases for analysis to the multi-parameters anomalies, preceding the shocking, with quasi-synchronism and geoconsistency. The specific LCA coupling effects related with the earthquakes are also discussed in brief.
    Description: Published
    Description: Munich, Germany
    Description: 1.10. TTC - Telerilevamento
    Description: 3.1. Fisica dei terremoti
    Description: restricted
    Keywords: earthquake anomaly recognition (EAR) ; GEOSS ; lithosphere-coversphere-atmosphere (LCA) coupling ; multiple parameters ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In this paper we investigate nature and properties of narrow-band, transient seismic signals observed by a temporary array deployed in the Val Tiberina area (central Apennines, Italy). These signals are characterized by spindle-shaped, harmonic waveforms with no clear S-wave arrivals. The first portion of the seismograms exhibits a main frequency peak centred at 4.5 Hz, while the spectrum of the slowly decaying coda is peaked at about 2 Hz. Events discrimination is performed using a matched-filtering technique, resulting in a set of 2466 detections spanning the 2010 January–March time interval. From a plane-wave-fitting procedure, we estimate the kinematic properties of signals pertaining to a cluster of similar events. The repetition of measurements over a large number of precisely aligned seismograms allows for obtaining a robust statistics of horizontal slownesses and propagation azimuths associated with the early portion of the waveforms. The P-wave arrival exhibits horizontal slownesses around 0.1 s km−1, thus suggesting waves impinging at the array almost vertically. Separately, we use traveltimes measured at a sparse network to derive independent constraints on epicentral location. Ray parameters and azimuths are calibrated using slowness measurements from a local, well-located earthquake. After this correction, the joint solution from traveltime inversion and array analysis indicates a source region spanning the 1–3 km depth interval. Considerations related to the source depth and energy, and the occurrence rate which is not related to the daily and weekly working cycles, play against a surface, artificial source. Instead, the close resemblance of these signals to those commonly observed in volcanic environments suggest a source mechanism related to the resonance of a fluid–filled fracture, likely associated with instabilities in the flux of pressurized CO2.
    Description: Published
    Description: 918-928
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Fracture and flow ; Earthquake source observations ; Interface waves ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-03
    Description: After an earthquake, rapid, real-time assessment of hazards such as ground shaking and tsunami potential is important for early warning and emergency response. Tsunami potential depends on sea floor displacement, which is related to the length, L, width, W, mean slip, D, and depth, z, of earthquake rupture. Currently, the primary discriminant for tsunami potential is the centroid-moment tensor magnitude, MwCMT, representing the seismic potency LWD, and estimated through an indirect, inversion procedure. The obtained MwCMT and the implied LWD value vary with the depth of faulting, assumed earth model and other factors, and is only available 30 min or more after an earthquake. The use of more direct procedures for hazard assessment, when available, could avoid these problems and aid in effective early warning. Here we present a direct procedure for rapid assessment of earthquake tsunami potential using two, simple measures on P-wave seismograms – the dominant period on the velocity records, Td, and the likelihood that the high-frequency, apparent rupture-duration, T0, exceeds 50-55 sec. T0 can be related to the critical parameters L and z, while Td may be related to W, D or z. For a set of recent, large earthquakes, we show that the period-duration product TdT0 gives more information on tsunami impact and size than MwCMT and other currently used discriminants. All discriminants have difficulty in assessing the tsunami potential for oceanic strike-slip and back-arc or upper-plate, intraplate earthquake types. Our analysis and results suggest that tsunami potential is not directly related to the potency LWD from the “seismic” faulting model, as is assumed with the use of the MwCMT discriminant. Instead, knowledge of rupture length, L, and depth, z, alone can constrain well the tsunami potential of an earthquake, with explicit determination of fault width, W, and slip, D, being of secondary importance. With available real-time seismogram data, rapid calculation of the direct, period- duration discriminant can be completed within 6-10 min after an earthquake occurs and thus can aid in effective and reliable tsunami early warning.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: open
    Keywords: Earthquake dynamics ; Earthquake source observations ; Seismic monitoring ; Body waves ; Early warning ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...