ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wave propagation  (5)
  • 04. Solid Earth::04.04. Geology::04.04.04. Marine geology  (3)
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology  (3)
  • Wiley  (7)
  • ELSEVIER  (2)
  • John Wiley & Sons  (2)
  • American Physical Society
  • 2010-2014  (11)
  • 1
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: Published
    Description: 452-462
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In the northern Apennines, the Palaeozoic basement involved in the Late Oligocene–Middle Miocene nappe stack contains metamorphic units for which hypothetical ages have been assigned on the basis of lithological correlations with the Palaeozoic formations of the Variscan chain in Sardinia. This uncertainty concerning the age poses limitations to reconstructing the Palaeozoic stratigraphy, defining the Alpine and pre-Alpine histories and correlations with other domains of the Variscan chain. We present the UPb age of detrital zircon and the 40Ar39Ar age of metamorphic muscovite for the Calamita Schist and Ortano Porphyroid, two metamorphic units of undetermined Palaeozoic age cropping out in the eastern Elba Island. The radioisotopic data allows us to: (i) define the Early Carboniferous and Middle Ordovician ages for the Calamita Schist and Ortano Porphyroid, respectively, as well as their derivation (flysch deposit and magmatic rocks); (ii) pose some constraints concerning their alpine tectonic and metamorphic histories. These new data generate a more precise reconstruction of the Palaeozoic sequence in the northern Apennines, and they document that the Palaeozoic basement involved in the alpine deformation underwent internal stacking with an inversion of the original sequence. Copyright © 2010 John Wiley & Sons, Ltd.
    Description: Published
    Description: 288-310
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: northern Apennines ; Palaeozoic basement ; U-Pb zircon ; 40Ar-39Ar muscovite ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We present a high resolution DTM of the Palinuro Seamount (PS, Tyrrhenian Sea, Italy) resulting from the processing of multibeam swath bathymetry records acquired during the second leg of the “Aeolian 2007” cruise. PS consists of several superimposed volcanoes aligned along a N100°E strike and measures 55×25 km. The western and the central sectors result from the coalescence of collapse structures (calderas) with younger volcanic cones. The eastern sector reveals a more complex and articulated structure. In the central sector, a volcanic crater with a well-preserved rim not obliterated by erosional events suggests a volcanological rejuvenation of this sector. The presence of flat surfaces on the top of the seamount may be due to the formation of marine terraces during the last sea-level lowering. Lateral collapses on the northern and southern flanks of the seamount are probably related to slope instability, as suggested by the presence of steep slopes (25–40°). The main fault affecting PS strikes N65°E and shows a right lateral component of movement. E–W and N10°E striking faults are also present. Assuming that theN100°E deep-seated fault,which is responsible for theemplacement of PS,movedwith sinistral slips, we interpret the N65°E and the N10°E faults as right-lateral (second order) shear and left-lateral (third order) shear, respectively. Due to the particular location of the Palinuro Seamount, the data presented here allow us to better understand the volcanism and the geodynamic processes of the Tyrrhenian Sea.
    Description: Published
    Description: 129–140
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Multibeam bathymetry ; Marine volcanoes ; Tyrrhenian Sea ; Seamount ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We reply to a comment by Messina et al., who strongly criticized our paper on the San Pio Fault, by showing that in areas of complex geology such as the central Apennines, where the current tectonic setting results from the superposition of different tectonic regimes, the equation: “most visible active fault = major seismogenic fault” can be misleading.
    Description: Published
    Description: 421-423
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Seismotectonics ; morphotectonics ; active fault ; San Pio basin ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In the northern Apennines, the Palaeozoic basement involved in the Late Oligocene–Middle Miocene nappe stack contains metamorphic units for which hypothetical ages have been assigned on the basis of lithological correlations with the Palaeozoic formations of the Variscan chain in Sardinia. This uncertainty concerning the age poses limitations to reconstructing the Palaeozoic stratigraphy, defining the Alpine and pre-Alpine histories and correlations with other domains of the Variscan chain. We present the U-Pb age of detrital zircon and the 40Ar-39Ar age of metamorphic muscovite for the Calamita Schist and Ortano Porphyroid, two metamorphic units of undetermined Palaeozoic age cropping out in the eastern Elba Island. The radioisotopic data allows us to: (i) define the Early Carboniferous and Middle Ordovician ages for the Calamita Schist and Ortano Porphyroid, respectively, as well as their derivation (flysch deposit and magmatic rocks); (ii) pose some constraints concerning their alpine tectonic and metamorphic histories. These new data generate a more precise reconstruction of the Palaeozoic sequence in the northern Apennines, and they document that the Palaeozoic basement involved in the alpine deformation underwent internal stacking with an inversion of the original sequence.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: northern Apennines ; Palaeozoic basement ; U-Pb zircon ; 40Ar-39Ar muscovite ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We investigate in detail the crustal layering of the ‘Val di Chiana Basin’ (Northern Apennines, Tuscany, Italy) through receiver functions and seismic anisotropy with hexagonal symmetry. The teleseismic data set is recorded in correspondence of a typical foreland basin resulting by the progressive eastward retreat of a regional-scale subduction zone trapped between two continents. We study the azimuthal variations of the computed and binned receiver functions associated to a harmonic angular analysis to emphasize the presence of the dipping and the anisotropic structures. The resulting S-wave velocity model shows interesting and new results for this area that we discuss in a regional geodynamic contest contributing to the knowledge of the structure of the forearc of the subduction zone. A dipping interface (N192°E strike, 18° dip) has been revealed at about 1.5 km depth, that separates the basin sediments and flysch from the carbonates and evaporites. Moreover, we interpret the two upper-crust anisotropic layers (at about 6 and 17 km depth) as the Hercynian Phyllites and Micaschists, of the Metamorphic Tuscan Basement. At relatively shallow depths, the presence of these metamorphic rocks causes the seismic anisotropy in the upper crust. The presence of shallow anisotropic layers is a new and interesting feature, first revealed in the study area. Beneath the crust–mantle transition (Moho), located about 28 km depth, our analysis reveals a 7-km-thick anisotropic layer.
    Description: Published
    Description: 545-556
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic anisotopy ; Computational Seismology ; Wave propagation ; Subduction zone process ; Crustal structure ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: In press
    Description: (11)
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2011. This article is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 186 (2011): 760-770, doi:10.1111/j.1365-246X.2011.05055.x.
    Description: We analysed high-frequency body waves of local earthquakes to image the damage zone of the Calico fault in the eastern California shear zone. We used generalized ray theory and finite difference methods to compute synthetic seismograms for a low-velocity fault zone (FZ) to model the direct and FZ-reflected P and S traveltimes of local earthquakes recorded by a temporary array across the fault. The low velocity zone boundaries were determined by apparent traveltime delays across the fault. The velocity contrast between the fault zone and host rock was constrained by the traveltime delays of P and S waves and differential traveltimes between the direct and FZ-reflected waves. The dip and depth extent of the low velocity zone were constrained by a systematic analysis of direct P traveltimes of events on both sides of the fault. We found that the Calico fault has a ∼1.3-km-wide low velocity zone in which the P- and S-wave velocity decreased 40 and 50 per cent, respectively, with respect to the host rock. The low velocity zone dips 70° northeast and extends 3 km in depth.
    Description: This work is supported by the National Science Foundation under Grant No. EAR-0609969 and EAR-0838195.
    Keywords: Body waves ; Interface waves ; Wave propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We present a high resolution DTM of the Palinuro Seamount (PS, Tyrrhenian Sea, Italy) resulting from the processing of multibeam swath bathymetry records acquired during the second leg of the “Aeolian 2007” cruise. PS consists of several superimposed volcanoes aligned along a N100°E strike and measures 55×25 km. The western and the central sectors result from the coalescence of collapse structures (calderas) with younger volcanic cones. The eastern sector reveals a more complex and articulated structure. In the central sector, a volcanic crater with a well-preserved rim not obliterated by erosional events suggests a volcanological rejuvenation of this sector. The presence of flat surfaces on the top of the seamount may be due to the formation of marine terraces during the last sea-level lowering. Lateral collapses on the northern and southern flanks of the seamount are probably related to slope instability, as suggested by the presence of steep slopes (25–40°). The main fault affecting PS strikes N65°E and shows a right lateral component of movement. E–W and N10°E striking faults are also present. Assuming that theN100°E deep-seated fault,which is responsible for theemplacement of PS,movedwith sinistral slips, we interpret the N65°E and the N10°E faults as right-lateral (second order) shear and left-lateral (third order) shear, respectively. Due to the particular location of the Palinuro Seamount, the data presented here allow us to better understand the volcanism and the geodynamic processes of the Tyrrhenian Sea.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: Multibeam bathymetry ; Marine volcanoes ; Tyrrhenian Sea ; Seamount ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Stromboli is a 3000 m high island volcano, rising to 900 m above sea-level. It is the most active volcano of the Aeolian Archipelago in the Tyrrhenian Sea (Italy). Major, large volume (1 km3) sector collapses, four occurring in the last 13 kyr, have played an important role in shaping the north-western flank (Sciara del Fuoco) of the volcano, potentially generating a high-risk tsunami hazard for the Aeolian Islands and the Italian coast. However, smaller volume, partial collapses of the Sciara del Fuoco have been shown to be more frequent tsunami-generating events. One such event occurred on 30 December 2002, when a partial collapse of the north-western flank of the island took place. The resulting landslide generated 10 m high tsunami waves that impacted the island. Multibeam bathymetry, side-scan sonar imaging and visual observations reveal that the landslide deposited 25 to 30 × 106 m3 of sediment on the submerged slope offshore from the Sciara del Fuoco. Two contiguous main deposit facies are recognized: (i) a chaotic, coarse-grained (metre-sized to centimetre-sized clasts) deposit; and (ii) a sand deposit containing a lower, cross-bedded sand layer and an upper structureless pebbly sand bed capped by sea floor ripple bedforms. The sand facies develops adjacent to and partially overlying the coarse deposits. Characteristics of the deposits suggest that they were derived from cohesionless, sandy matrix density flows. Flow rheology and dynamics led to the segregation of the density flow into sand-rich and clast-rich regions. A range of density flow transitions, both in space and in time, caused principally by particle concentration and grain-size partitioning within cohesionless parent flows was identified in the deposits of this relatively small-scale submarine landslide event.
    Description: Published
    Description: 1488-1504
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Flow transitions ; island volcano ; subaqueous cohesionless density flows ; submarine landslide deposits ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2010. This article is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 181 (2010): 997-1016, doi:10.1111/j.1365-246X.2010.04552.x.
    Description: In the 2005 TICOCAVA explosion seismology study in Costa Rica we observed crustal turning waves with a dominant frequency of ~10 Hz on a linear array of short-period seismometers from the Pacific Ocean to the Caribbean Sea. On one of the shot records, from Shot 21 in the backarc of the Cordillera Central, we also observed two seismic phases with an unusually high dominant frequency (~20 Hz). These two phases were recorded in the forearc region of central Costa Rica and arrived ~7 s apart and 30 to 40 s after the detonation of Shot 21. We considered the possibility that these secondary arrivals were produced by a local earthquake that may have happened during the active-source seismic experiment. Such high-frequency phases following Shot 21 were not recorded after Shots 22, 23, and 24, all in the backarc of Costa Rica, which might suggest that they were produced by some other source. However, earthquake dislocation models cannot produce seismic waves of such high frequency with significant amplitude. In addition, we would have expected to see more arrivals from such an earthquake on other seismic stations in central Costa Rica. We therefore investigate whether the high-frequency arrivals may be the result of a deep seismic reflection from the subducting Cocos plate. The timing of these phases is consistent with a shear wave from Shot 21 that was reflected as a compressional (SxP) and a shear (SxS) wave at the top of the subducting Cocos slab between 35 and 55 km depth. The shift in dominant frequency from ~10 Hz in the downgoing seismic wave to ~20 Hz in the reflected waves requires a particular seismic structure at the interface between the subducting slab and the forearc mantle in order to produce a substantial increase in reflection coefficients with frequency. The spectral amplitude characteristics of the SxP and SxS phases from Shot 21 are consistent with a very high Vp/Vs ratio of 6 in ~5 m thick, slab-parallel layers. This result suggests that a system of thin shear zones near the plate interface beneath the forearc is occupied by hydrous fluids under near-lithostatic conditions. The overpressured shear zone probably takes up fluids from the downgoing slab, and it may control the lower limit of the seismogenic zone.
    Description: This work was funded by the US National Science Foundation MARGINS programme.
    Keywords: Controlled source seismology ; Body waves ; Wave propagation ; Subduction zone processes ; Continental margins: convergent
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...