ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mixing  (12)
  • Climate change  (10)
  • American Geophysical Union  (22)
  • 2010-2014  (22)
Collection
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L24604, doi:10.1029/2012GL054034.
    Description: Eddies and vortices associated with breaking waves rapidly disperse pollution, nutrients, and terrestrial material along the coast. Although theory and numerical models suggest that vorticity is generated near the ends of a breaking wave crest, this hypothesis has not been tested in the field. Here we report the first observations of wave-generated vertical vorticity (e.g., horizontal eddies), and find that individual short-crested breaking waves generate significant vorticity [O(0.01 s−1)] in the surfzone. Left- and right-handed wave ends generate vorticity of opposite sign, consistent with theory. In contrast to theory, the observed vorticity also increases inside the breaking crest, possibly owing to onshore advection of vorticity generated at previous stages of breaking or from the shape of the breaking region. Short-crested breaking transferred energy from incident waves to lower frequency rotational motions that are a primary mechanism for dispersion near the shoreline.
    Description: Funding was provided by a National Security Science and Engineering Faculty Fellowship, the Office of Naval Research, and a Woods Hole Oceanographic Institution Postdoctoral Fellowship.
    Description: 2013-06-21
    Keywords: Mixing ; Nearshore ; Turbulence ; Vorticity ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C02027, doi:10.1029/2011JC007033.
    Description: Observations of the spatial distribution and persistence of thermohaline structure are presented, and show how advection and diffusion affect a passive tracer. More than two years of underwater glider observations in the central subtropical North Pacific showed thermohaline variability over horizontal scales from 5 to 1300 km. Thermohaline fluctuations along isopycnals (spice fluctuations) were elevated in layers throughout the water column with the largest fluctuations near the surface and subtropical frontal regions. Fluctuations were uncorrelated between the layers but stirred by the same velocity field. Spice variance had local extrema in the vertical because of differences in source water properties and the influence of neighboring water masses. Spice variance spanned about three orders of magnitude along deeper isopycnals with larger variance where different water masses met and where velocity and vorticity variance were elevated. Horizontal wave number spectra of spice had slopes of −2 everywhere in the upper 1000 m. Submesoscale spice fluctuations had slopes in physical space near the ratio of the Coriolis parameter to the buoyancy frequency (f/N), consistent with predictions of quasi-geostrophic theory. In the mixed layer, thermohaline structure had a significant annual cycle with smaller interannual differences. Thermohaline fluctuations left behind during restratification and isolated from the mixed layer decayed with time because of diffusion along isopycnals. Horizontal diffusivity estimates in the remnant mixed layer were 0.4 m2 s−1 at 15–28 km wavelengths and 0.9 m2 s−1 at 35–45 km wavelengths.
    Description: We gratefully acknowledge the National Science Foundation for funding this work under grant number OCE0452574.
    Description: 2012-08-18
    Keywords: Diffusion ; Mixing ; Spice ; Stirring ; Thermohaline structure
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Geophysical Research Letters 39 (2012): L15501, doi:10.1029/2012GL052222.
    Description: Starting in Late Pleistocene time (~19 ka), sea level rise inundated coastal zones worldwide. On some parts of the present-day circum-Arctic continental shelf, this led to flooding and thawing of formerly subaerial permafrost and probable dissociation of associated gas hydrates. Relict permafrost has never been systematically mapped along the 700-km-long U.S. Beaufort Sea continental shelf and is often assumed to extend to ~120 m water depth, the approximate amount of sea level rise since the Late Pleistocene. Here, 5,000 km of multichannel seismic (MCS) data acquired between 1977 and 1992 were examined for high-velocity (〉2.3 km s−1) refractions consistent with ice-bearing, coarse-grained sediments. Permafrost refractions were identified along 〈5% of the tracklines at depths of ~5 to 470 m below the seafloor. The resulting map reveals the minimum extent of subsea ice-bearing permafrost, which does not extend seaward of 30 km offshore or beyond the 20 m isobath.
    Description: This research was sponsored by DOE-USGS Interagency Agreement DE-FE0002911. L.B. was supported by a DOE NETL/NRC Methane Hydrate Fellowship under DE-FC26-05NT42248.
    Keywords: Beaufort Sea ; Climate change ; Methane hydrates ; Refraction ; Sea level ; Subsea permafrost
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB3022, doi:10.1029/2010GB003892.
    Description: The North Atlantic Ocean accounts for about 25% of the global oceanic anthropogenic carbon sink. This basin experiences significant interannual variability primarily driven by the North Atlantic Oscillation (NAO). A suite of biogeochemical model simulations is used to analyze the impact of interannual variability on the uptake and storage of contemporary and anthropogenic carbon (Canthro) in the North Atlantic Ocean. Greater winter mixing during positive NAO years results in increased mode water formation and subsequent increases in subtropical and subpolar Canthro inventories. Our analysis suggests that changes in mode water Canthro inventories are primarily due to changes in water mass volumes driven by variations in water mass transformation rates rather than local air-sea CO2 exchange. This suggests that a significant portion of anthropogenic carbon found in the ocean interior may be derived from surface waters advected into water formation regions rather than from local gas exchange. Therefore, changes in climate modes, such as the NAO, may alter the residence time of anthropogenic carbon in the ocean by altering the rate of water mass transformation. In addition, interannual variability in Canthro storage increases the difficulty of Canthro detection and attribution through hydrographic observations, which are limited by sparse sampling of subsurface waters in time and space.
    Description: We would like to acknowledge funding from the NOAA Climate Program under the Office of Climate Observations and Global Carbon Cycle Program (NOAA‐NA07OAR4310098), NSF (OCE‐0623034), NCAR, the WHOI Ocean Climate Institute, a National Defense Science and Engineering Graduate Fellowship and an Environmental Protection Agency STAR graduate fellowship. NCAR is sponsored by the National Science Foundation.
    Keywords: North Atlantic Oscillation ; Anthropogenic carbon ; Carbon cycle ; Climate change ; Global climate model ; Mode waters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: text/plain
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C11028, doi:10.1029/2011JC007211.
    Description: Five surf zone dye tracer releases from the HB06 experiment are simulated with a tracer advection diffusion model coupled to a Boussinesq surf zone model (funwaveC). Model tracer is transported and stirred by currents and eddies and diffused with a breaking wave eddy diffusivity, set equal to the breaking wave eddy viscosity, and a small (0.01 m2 s−1) background diffusivity. Observed and modeled alongshore parallel tracer plumes, transported by the wave driven alongshore current, have qualitatively similar cross-shore structures. Although the model skill for mean tracer concentration is variable (from negative to 0.73) depending upon release, cross-shore integrated tracer moments (normalized by the cross-shore tracer integral) have consistently high skills (≈0.9). Modeled and observed bulk surf zone cross-shore diffusivity estimates are also similar, with 0.72 squared correlation and skill of 0.4. Similar to the observations, the model bulk (absolute) cross-shore diffusivity is consistent with a mixing length parameterization based on low-frequency (0.001–0.03 Hz) eddies. The model absolute cross-shore dispersion is dominated by stirring from surf zone eddies and does not depend upon the presence of the breaking wave eddy diffusivity. Given only the bathymetry and incident wave field, the coupled Boussinesq-tracer model qualitatively reproduces the observed cross-shore absolute tracer dispersion, suggesting that the model can be used to study surf zone tracer dispersion mechanisms.
    Description: This research was supported by SCCOOS, CA Coastal Conservancy, NOAA, NSF, ONR, and CA Sea Grant.
    Description: 2012-05-18
    Keywords: Dispersion ; Mixing ; Surf zone ; Tracer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C11027, doi:10.1029/2011JC007210.
    Description: A model that accurately simulates surf zone waves, mean currents, and low-frequency eddies is required to diagnose the mechanisms of surf zone tracer transport and dispersion. In this paper, a wave-resolving time-dependent Boussinesq model is compared with waves and currents observed during five surf zone dye release experiments. In a companion paper, Clark et al. (2011) compare a coupled tracer model to the dye plume observations. The Boussinesq model uses observed bathymetry and incident random, directionally spread waves. For all five releases, the model generally reproduces the observed cross-shore evolution of significant wave height, mean wave angle, bulk directional spread, mean alongshore current, and the frequency-dependent sea surface elevation spectra and directional moments. The largest errors are near the shoreline where the bathymetry is most uncertain. The model also reproduces the observed cross-shore structure of rotational velocities in the infragravity (0.004 〈 f 〈 0.03 Hz) and very low frequency (VLF) (0.001 〈 f 〈 0.004 Hz) bands, although the modeled VLF energy is 2–3 times too large. Similar to the observations, the dominant contributions to the modeled eddy-induced momentum flux are in the VLF band. These eddies are elliptical near the shoreline and circular in the mid surf zone. The model-data agreement for sea swell waves, low-frequency eddies, and mean currents suggests that the model is appropriate for simulating surf zone tracer transport and dispersion.
    Description: This research was supported by SCCOOS, CA Coastal Conservancy, NOAA, NSF, ONR, and CA Sea Grant.
    Description: 2012-05-18
    Keywords: Mixing ; Surf zone ; Tracer dispersion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C09019, doi:10.1029/2010JC006818.
    Description: There is an ongoing debate concerning the distribution of eddy stirring across the Antarctic Circumpolar Current (ACC) and the nature of its controlling processes. The problem is addressed here by estimating the isentropic eddy diffusivity κ from a collection of hydrographic and altimetric observations, analyzed in a mixing length theoretical framework. It is shown that, typically, κ is suppressed by an order of magnitude in the upper kilometer of the ACC frontal jets relative to their surroundings, primarily as a result of a local reduction of the mixing length. This observation is reproduced by a quasi-geostrophic theory of eddy stirring across a broad barotropic jet based on the scaling law derived by Ferrari and Nikurashin (2010). The theory interprets the observed widespread suppression of the mixing length and κ in the upper layers of frontal jets as the kinematic consequence of eddy propagation relative to the mean flow within jet cores. Deviations from the prevalent regime of mixing suppression in the core of upper-ocean jets are encountered in a few special sites. Such ‘leaky jet’ segments appear to be associated with sharp stationary meanders of the mean flow that are generated by the interaction of the ACC with major topographic features. It is contended that the characteristic thermohaline structure of the Southern Ocean, consisting of multiple upper-ocean thermohaline fronts separated and underlaid by regions of homogenized properties, is largely a result of the widespread suppression of eddy stirring by parallel jets.
    Description: This study was conducted during A.C.N. G.’s stay at MIT, which was supported jointly by MIT and the U.K. Natural Environment Research Council (NERC) through a NERC Advanced Research Fellowship (NE/C517633/1). R.F. acknowledges the support of NSFaward OCE‐0825376. K.P.’s participation in this work was supported by WHOI bridge support funds.
    Keywords: Antarctic Circumpolar Current ; Eddy stirring ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C12024, doi:10.1029/2009JC006061.
    Description: Turbulent mixing of salt is examined in a shallow salt wedge estuary with strong fluvial and tidal forcing. A numerical model of the Merrimack River estuary is used to quantify turbulent stress, shear production, and buoyancy flux. Little mixing occurs during flood tides despite strong velocities because bottom boundary layer turbulence is dislocated from stratification elevated in the water column. During ebbs, bottom salinity fronts form at a series of bathymetric transitions. At the fronts, near-bottom velocity and shear stress are low, but shear, stress, and buoyancy flux are elevated at the pycnocline. Internal shear layers provide the dominant source of mixing during the early ebb. Later in the ebb, the pycnocline broadens and moves down such that boundary layer turbulence dominates mixing. Mixing occurs primarily during ebbs, with internal shear mixing accounting for about 50% of the total buoyancy flux. Both the relative contribution of internal shear mixing and the mixing efficiency increase with discharge, with bulk mixing efficiencies between 0.02 and 0.07. Buoyancy fluxes in the estuary increase with discharge up to about 400 m3 s−1 above which a majority of the mixing occurs offshore. Observed buoyancy fluxes were more consistent with the k-ɛ turbulence closure than the Mellor-Yamada closure, and more total mixing occurred in the estuary with k-ɛ. Calculated buoyancy fluxes were sensitive to horizontal grid resolution, as a lower resolution grid yielded less integrated buoyancy flux in the estuary and exported lower salinity water but likely had greater numerical mixing.
    Description: This research was funded by National Science Foundation Grant OCE‐0452054. Ralston also received support from The Penzance Endowed Fund in Support of Assistant Scientists and The John F. and Dorothy H. Magee Fund in Support of Scientific Staff at Woods Hole Oceanographic Institution.
    Keywords: Mixing ; Turbulence ; Salt wedge estuary
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 25 (2010): PA4222, doi:10.1029/2010PA001936.
    Description: Observations and an ocean box model are combined in order to test the adequacy of the freshwater forcing hypothesis to explain abrupt climate change given the uncertainties in the parameterization of vertical buoyancy transport in the ocean. The combination is carried out using Bayesian stochastic inversion, which allows us to infer changes in the mass balance of Northern Hemisphere (NH) ice sheets and in the meridional transports of mass and heat in the Atlantic Ocean that would be required to explain Dansgaard-Oeschger Interstadials (DOIs) from 30 to 39 kyr B.P. The mean sea level changes implied by changes in NH ice sheet mass balance agree in amplitude and timing with reconstructions from the geologic record, which gives some support to the freshwater forcing hypothesis. The inversion suggests that the duration of the DOIs should be directly related to the growth of land ice. Our results are unaffected by uncertainties in the representation of vertical buoyancy transport in the ocean. However, the solutions are sensitive to assumptions about physical processes at polar latitudes.
    Description: This material is based upon work supported by the National Science Foundation under grant OCE‐0402363 and Department of Energy grant DE‐FG02‐08ER64619.
    Keywords: Inversion ; MOC ; Abrupt ; Sea level ; Coral ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L06602, doi:10.1029/2010GL046573.
    Description: Iron is an essential micronutrient that limits primary productivity in much of the ocean, including the Gulf of Alaska (GoA). However, the processes that transport iron to the ocean surface are poorly quantified. We combine satellite and meteorological data to provide the first description of widespread dust transport from coastal Alaska into the GoA. Dust is frequently transported from glacially-derived sediment at the mouths of several rivers, the most prominent of which is the Copper River. These dust events occur most frequently in autumn, when coastal river levels are low and riverbed sediments are exposed. The dust plumes are transported several hundred kilometers beyond the continental shelf into iron-limited waters. We estimate the mass of dust transported from the Copper River valley during one 2006 dust event to be between 25–80 ktons. Based on conservative estimates, this equates to a soluble iron loading of 30–200 tons. We suggest the soluble Fe flux from dust originating in glaciofluvial sediment deposits from the entire GoA coastline is two to three times larger, and is comparable to the annual Fe flux to GoA surface waters from eddies of coastal origin. Given that glaciers are retreating in the coastal GoA region and in other locations, it is important to examine whether fluxes of dust are increasing from glacierized landscapes to the ocean, and to assess the impact of associated Fe on marine ecosystems.
    Description: We appreciate support from the USGS CMGP, NCCWSC, the Mendenhall postdoc program, the Woods Hole PEP intern program, and from NASA‐IDS.
    Keywords: Dust ; Glacier ; Iron ; Aerosol ; Climate change ; Micronutrient
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: image/jpeg
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...