ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics  (11)
  • Climate change  (10)
  • American Geophysical Union  (21)
  • 2010-2014  (21)
Collection
Years
Year
  • 1
    Publication Date: 2020-12-18
    Description: Along the Italian peninsula adjoin two crustal domains, peri-Tyrrhenian and Adriatic, whose boundary is not univocal in central Italy. In this area, we attempt to map the extent of the Moho in the two terrains from variations of the travel time difference between the direct P wave and the P-to-S wave converted at the crust-mantle boundary, called PsMoho. We use teleseismic receiver functions computed at 38 broad-band stations in this and previous studies, and assigned each of the recording sites to the Adriatic or peri-Tyrrhenian terrains based on station location, geologic and geophysical data and interpretation, and consistency of delays with the regional Moho trend. The results of the present study show that the PsMoho arrival time varies from 2.3 to 4.1 s in the peri-Tyrrhenian domain and from 3.7 to 5.5 s in the Adriatic domain. As expected, the lowest time difference is observed along the Tyrrhenian coastline and the largest values are observed in the axial zone of the Apennine chain. A key new result of this study is a sharp E-W boundary in the Adriatic domain that separates a deeper Moho north of about 42 N latitude from a shallower Moho to the south. This feature is constrained for a length of about 40 km by the observations available in this study. The E-W boundary requires a revision of prior mapping of the Moho in central Italy and supports previous hypotheses of lithosphere segmentation.
    Description: Published
    Description: 3929–3938
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: teleseismic receiver functions ; Moho discontinuity ; central Italy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We report the paleomagnetic and magnetic fabric results of 58 sites from Cretaceous-Miocene marine and continental strata from the Eastern Cordillera (EC) and the Cucuta zone, at the junction between the Santander Massif and the Merida Andes of Colombia. The EC is an intracontinental doubly vergent range inverting a Triassic to Early Cretaceous rift zone. Twenty-three sites reveal nonsystematic tectonic rotations, including unrotated areas of the EC range with respect to stable South America. Our data show that the EC inverted a NNE oriented rift zone and that the orientation of the Mesozoic rift and the mountain chain roughly correspond. Interestingly, magnetic lineations from anisotropy of magnetic susceptibility analysis do not trend parallel to the chain but rather are oblique to the main orogenic trend. By also considering GPS evidence of a ~1 cm/yr ENE displacement of central western Colombia accommodated by the EC, we suggest that the Miocene-Recent deformation event of this belt arises from ENE oblique convergence reactivating a NNE oriented rift zone. Oblique shortening was likely partitioned into pure dip-slip shear characterizing thick-skinned frontal thrust sheets (well known along both chain fronts) and by range-parallel right-lateral strike-slip faults, which have not been identified yet, but likely exist in the axial part of the EC. Finally, the 35° ± 9° clockwise rotation observed in four post-Miocene magnetically overprinted sites from the Cucuta zone reflects late Cenozoic and ongoing right-lateral strike-slip displacement occurring along faults parallel to the Boconó fault system, possibly connected with the right-lateral faults inferred to exist along the axial part of the EC.
    Description: Published
    Description: 2233–2260
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Paleomagnetism, magnetic fabric, Eastern Cordillera ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We use 2.5 to 14 years long position time series from 〉800 continuous Global Positioning System (GPS) stations to study vertical deformation rates in the Euro-Mediterranean region. We estimate and remove common mode errors in position time series using a principal component analysis, obtaining a significant gain in the signal-to-noise ratio of the displacements data. Following the results of a maximum likelihood estimation analysis, which gives a mean spectral index ~ 0.7, we adopt a power law + white noise stochastic model in estimating the final vertical rates and find 95% of the velocities within ±2 mm/yr, with uncertainties from filtered time series ~40% smaller than from the unfiltered ones. We highlight the presence of statistically significant velocity gradients where the stations density is higher. We find undulations of the vertical velocity field at different spatial scales both in tectonically active regions, like eastern Alps, Apennines, and eastern Mediterranean, and in regions characterized by a low or negligible tectonic activity, like central Iberia and western Alps. A correlation between smooth vertical velocities and topographic features is apparent in many sectors of the study area. Glacial isostatic adjustment and weathering processes do not completely explain the measured rates, and a combination of active tectonics and deep-seated geodynamic processes must be invoked. Excluding areas where localized processes are likely, or where subduction processes may be active, mantle dynamics is the most likely process, but regional mantle modeling is required for a better understanding.
    Description: Published
    Description: 6003–6024
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 1R. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: restricted
    Keywords: GPS ; Geodynamics ; Mediterranean ; Vertical deformation ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-26
    Description: In complex tectonics regions, seismological, geophysical, and geodynamic modeling require accurate definition of the Moho geometry. Various active and passive seismic experiments performed in the central Mediterranean region revealed local information on the Moho depth, in some cases used to produce interpolated maps. In this paper, we present a new and original map of the 3-D Moho geometry obtained by integrating selected high-quality controlled source seismic and teleseismic receiver function data. The very small cell size makes the retrieved model suitable for detailed regional studies, crustal corrections in teleseismic tomography, advanced 3-D ray tracing in regional earthquake location, and local earthquake tomography. Our results show the geometry of three different Moho interfaces: the European, Adriatic-Ionian, and Tyrrhenian. The three distinct Moho are fashioned following the Alpine and Apennines subduction, collision, and back-arc spreading and show medium- to high-frequency topographic undulations reflecting the complexity of the geodynamic evolution.
    Description: Published
    Description: Q09006
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Italy; controlled source seismology; crust; receiver function ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Volcanic rift zones, characterized by repeated dike emplacements, are expected to delimit the upper portion of unstable flanks at basaltic edifices. We use nearly two decades of InSAR observations excluding wintertime acquisitions, to analyze the relationships between rift zones, dike emplacement and flank instability at Etna. The results highlight a general eastward shift of the volcano summit, including the northeast and south rifts. This steadystate eastward movement (1-2 cm/yr) is interrupted or even reversed during transient dike injections. Detailed analysis of the northeast rift shows that only during phases of dike injection, as in 2002, does the rift transiently becomes the upper border of the unstable flank. The flank's steady-state eastward movement is inferred to result from the interplay between magmatic activity, asymmetric topographic unbuttressing, and east-dipping detachment geometry at its base. This study documents the first evidence of steady-state volcano rift instability interrupted by transient dike injection at basaltic edifices.
    Description: Partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”). ERS and ENVISAT SAR data were provided by ESA through the Cat-1 project no. 4532 and the GEO Supersite initiative. The DEM was obtained from the SRTM archive. ERS-1/2 orbits are courtesy of the TU-Delft, The Netherlands. SAR data processing has been done at IREACNR, partially carried out under contract “Volcanic Risk System (SRV)” funded by the Italian Space Agency (ASI).
    Description: Published
    Description: L20311
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: flank instability ; rift zones ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We here exploit fundamental mode Rayleigh and Love seismic wave information and the high resolution satellite global gravity model GGM02C to obtain a 1° × 1° 3-D image of: (a) upper-mantle isotropic shear-wave speeds; (b) densities; and (c) density-vS coupling below the European plate (20°N–90°N) (40°W–70°E). The 3-D image of the density-vS coupling provides unprecedented detail of information on the compositional and thermal contributions to density structures. The accurate and high-resolution crustal model allows us to compute a reliable residual topography to understand the dynamic implications of our models. The correlation between residual topography and mantle residual gravity anomalies defines three large-scale regions where upper mantle dynamics produce surface expression: the East European Craton; the eastern side of the Arabian Plate; and the Mediterranean Basin. The effects of mantle convection are also clearly visible at: (1) the Eastern Sirt Embayment; (2) the West African Craton northern margins; (3) the volcanically active region of the Canarian Archipelago; (4) the northern edge of the Central European Volcanic Province; and (5) the Northeastern part of the Atlantic Ocean, between Greenland and Iceland. Strong connections are observed among areas of weak radial anisotropy and areas where the mantle dynamics show surface expression. Although both thermal and additional dependencies have been incorporated into the density model, convective down-welling in the mantle below the East European Craton is required to explain the strong correlation between the estimated negative mantle residual anomalies and the negative residual topography.
    Description: DATEC MERG-CT-2007-046522 and NERIES INFRAST-2.1-026130
    Description: Published
    Description: B09401
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Europe ; GRACE ; density-velocity scaling relationship ; dynamic topography ; surface waves ; upper mantle density ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state ; 04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Geophysical Research Letters 39 (2012): L15501, doi:10.1029/2012GL052222.
    Description: Starting in Late Pleistocene time (~19 ka), sea level rise inundated coastal zones worldwide. On some parts of the present-day circum-Arctic continental shelf, this led to flooding and thawing of formerly subaerial permafrost and probable dissociation of associated gas hydrates. Relict permafrost has never been systematically mapped along the 700-km-long U.S. Beaufort Sea continental shelf and is often assumed to extend to ~120 m water depth, the approximate amount of sea level rise since the Late Pleistocene. Here, 5,000 km of multichannel seismic (MCS) data acquired between 1977 and 1992 were examined for high-velocity (〉2.3 km s−1) refractions consistent with ice-bearing, coarse-grained sediments. Permafrost refractions were identified along 〈5% of the tracklines at depths of ~5 to 470 m below the seafloor. The resulting map reveals the minimum extent of subsea ice-bearing permafrost, which does not extend seaward of 30 km offshore or beyond the 20 m isobath.
    Description: This research was sponsored by DOE-USGS Interagency Agreement DE-FE0002911. L.B. was supported by a DOE NETL/NRC Methane Hydrate Fellowship under DE-FC26-05NT42248.
    Keywords: Beaufort Sea ; Climate change ; Methane hydrates ; Refraction ; Sea level ; Subsea permafrost
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-02-03
    Description: Calabria represents an ideal site to analyze the topography of a subduction zone as it is located on top of a narrow active Wadati-Benioff zone and shows evidence of rapid uplift. We analyzed a pattern of surface deformation using elevation data with different filters and showed the existence of a long wavelength (〉100 km) relatively positive topographic signal at the slab edges. The elevation of MIS 5.5 stage marine terraces supports this pattern, although the record is incomplete and partly masked by the variable denudation rate. We performed structural analyses along the major active or recently reactivated normal faults showing that the extensional direction varies along the Calabrian Arc and laterally switches from arc-normal, within the active portion of the slab, to arc-oblique or even arc-parallel, along the northern and southern slab edges. This surface deformation pattern was compared with a recent high resolution P wave tomographic model showing that the high seismic velocity anomaly is continuous only within the active Wadati-Benioff zone, whereas the northern and southwestern sides are marked by low velocity anomalies, suggesting that large-scale topographic bulges, volcanism, and uplift could have been produced by mantle upwelling. We present numerical simulations to visualize the three-dimensional mantle circulation around a narrow retreating slab, ideally similar to the one presently subducting beneath Calabria. We emphasize that mantle upwelling and surface deformation are expected at the edges of the slab, where return flows may eventually drive decompression melting and the Mount Etna volcanism.
    Description: Published
    Description: TC1003
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: topography ; Calabrian Arc ; subduction ; tomography ; mantle flow ; uplift ; retreat ; anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB3022, doi:10.1029/2010GB003892.
    Description: The North Atlantic Ocean accounts for about 25% of the global oceanic anthropogenic carbon sink. This basin experiences significant interannual variability primarily driven by the North Atlantic Oscillation (NAO). A suite of biogeochemical model simulations is used to analyze the impact of interannual variability on the uptake and storage of contemporary and anthropogenic carbon (Canthro) in the North Atlantic Ocean. Greater winter mixing during positive NAO years results in increased mode water formation and subsequent increases in subtropical and subpolar Canthro inventories. Our analysis suggests that changes in mode water Canthro inventories are primarily due to changes in water mass volumes driven by variations in water mass transformation rates rather than local air-sea CO2 exchange. This suggests that a significant portion of anthropogenic carbon found in the ocean interior may be derived from surface waters advected into water formation regions rather than from local gas exchange. Therefore, changes in climate modes, such as the NAO, may alter the residence time of anthropogenic carbon in the ocean by altering the rate of water mass transformation. In addition, interannual variability in Canthro storage increases the difficulty of Canthro detection and attribution through hydrographic observations, which are limited by sparse sampling of subsurface waters in time and space.
    Description: We would like to acknowledge funding from the NOAA Climate Program under the Office of Climate Observations and Global Carbon Cycle Program (NOAA‐NA07OAR4310098), NSF (OCE‐0623034), NCAR, the WHOI Ocean Climate Institute, a National Defense Science and Engineering Graduate Fellowship and an Environmental Protection Agency STAR graduate fellowship. NCAR is sponsored by the National Science Foundation.
    Keywords: North Atlantic Oscillation ; Anthropogenic carbon ; Carbon cycle ; Climate change ; Global climate model ; Mode waters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: text/plain
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L06602, doi:10.1029/2010GL046573.
    Description: Iron is an essential micronutrient that limits primary productivity in much of the ocean, including the Gulf of Alaska (GoA). However, the processes that transport iron to the ocean surface are poorly quantified. We combine satellite and meteorological data to provide the first description of widespread dust transport from coastal Alaska into the GoA. Dust is frequently transported from glacially-derived sediment at the mouths of several rivers, the most prominent of which is the Copper River. These dust events occur most frequently in autumn, when coastal river levels are low and riverbed sediments are exposed. The dust plumes are transported several hundred kilometers beyond the continental shelf into iron-limited waters. We estimate the mass of dust transported from the Copper River valley during one 2006 dust event to be between 25–80 ktons. Based on conservative estimates, this equates to a soluble iron loading of 30–200 tons. We suggest the soluble Fe flux from dust originating in glaciofluvial sediment deposits from the entire GoA coastline is two to three times larger, and is comparable to the annual Fe flux to GoA surface waters from eddies of coastal origin. Given that glaciers are retreating in the coastal GoA region and in other locations, it is important to examine whether fluxes of dust are increasing from glacierized landscapes to the ocean, and to assess the impact of associated Fe on marine ecosystems.
    Description: We appreciate support from the USGS CMGP, NCCWSC, the Mendenhall postdoc program, the Woods Hole PEP intern program, and from NASA‐IDS.
    Keywords: Dust ; Glacier ; Iron ; Aerosol ; Climate change ; Micronutrient
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: image/jpeg
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...