ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk  (40)
  • American Geophysical Union  (34)
  • INGV  (6)
Collection
Years
  • 1
    Publication Date: 2021-03-01
    Description: A new period of eruptive activity started at Turrialba volcano, Costa Rica, in 2010 after almost 150 years of quiescence. This activity has been characterized by sporadic explosions whose frequency clearly increased since October 2014. This study aimed to identify the mechanisms that triggered the resumption of this eruptive activity and characterize the evolution of the phenomena over the past 2 years. We integrate 3He/4He data available on fumarole gases collected in the summit area of Turrialba between 1999 and 2011 with new measurements made on samples collected between September 2014 and February 2016. The results of a petrological investigation of the products that erupted between October 2014 and May 2015 are also presented. We infer that the resumption of eruptive activity in 2010 was triggered by a replenishment of the plumbing system of Turrialba by a new batch of magma. This is supported by the increase in 3He/4He values observed since 2005 at the crater fumaroles and by comparable high values in September 2014, just before the onset of the new eruptive phase. The presence of a number of fresh and juvenile glassy shards in the erupted products increased between October 2014 and May 2015, suggesting the involvement of new magma with a composition similar to that erupted in 1864–1866. We conclude that the increase in 3He/4He at the summit fumaroles since October 2015 represents strong evidence of a new phase of magma replenishment, which implies that the level of activity remains high at the volcano.
    Description: Published
    Description: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Turrialba volcano ; eruptive activity ; 3He/4He ; fumarole gases ; glassy shards ; juvenile component ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The fumarolic gas output has not been quantified for any of the currently deforming calderas worldwide, due to the lack of suitable gas flux sensing techniques. In view of resumption of ground uplift (since 2005) and the associated variations in gas chemistry, Campi Flegrei, in southern Italy, is one of the restless calderas where gas flux observations are especially necessary. Here we report the first ever obtained estimate of the Campi Flegrei fumarolic gas output, based on a set of MultiGAS surveys (performed in 2012 and 2013) with an ad-hoc-designed measurement setup. We estimate that the current Campi Flegrei fumarolic sulphur (S) flux is low, on the order of 1.5–2.2 tons/day, suggesting substantial scrubbing of magmatic S by the hydrothermal system. However, the fumarolic carbon dioxide (CO2) output is ∼460±160 tons/day (mean±SD), which is surprisingly high for a dormant volcano in the hydrothermal stage of activity, and results in a combined (fumaroles + soil) CO2 output of ∼1560 tons/day. Assuming magma to be the predominant source, we propose that the current CO2 output can be supplied by either (i) a large (0.6–4.6 km3), deeply stored (〉7 km) magmatic source with low CO2 contents (0.05–0.1 wt%) or (ii) by a small to medium-sized (∼0.01–0.1 km3) but CO2-rich (2 wt%) magma, possibly stored at pressures of ∼100 to 120 MPa. Independent geophysical evidence (e.g., inferred from geodetic and gravity data) is needed to distinguish between these two possibilities.
    Description: Published
    Description: 4153–4169
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei ; calderas ; gas output ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The results of three-dimensional discrete element modeling (DEM) presented in this paper confirm the grain size and flow volume effects on granular flow mobility that were observed in laboratory experiments where batches of granular material traveled down a curved chute. Our numerical simulations are able to predict the correct relative mobility of the granular flows because they take into account particle interactions and, thus, the energy dissipated by the flows. The results illustrated here are obtained without prior fine tuning of the parameter values to get the desired output. The grain size and flow volume effects can be expressed by a linear relationship between scaling parameters where the finer the grain size or the smaller the flow volume, the more mobile the centre of mass of the granular flows. The numerical simulations reveal also the effect of the initial compaction of the granular masses before release. The larger the initial compaction, the more mobile the centre of mass of the granular flows. Both grain size effect and compaction effect are explained by different particle agitations per unit of flow mass that cause different energy dissipations per unit of travel distance. The volume effect is explained by the backward accretion of the deposits that occurs wherever there is a change of slope (either gradual or abrupt). Our results are relevant for the understanding of the travel and deposition mechanisms of geophysical flows such as rock avalanches and pyroclastic flows.
    Description: Published
    Description: 2350–2366
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: open
    Keywords: Pyroclastic Flows ; Mobility ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Il Somma-Vesuvio insieme a Campi Flegrei, Procida e Ischia è uno dei quattro vulcani presenti nell’area napoletana (Fig. 1). Fin dall’ultima eruzione, avvenuta nel marzo 1944, il vulcano è quiescente e caratterizzato solo da moderate emissioni fumaroliche e sismicità, prevalentemente concentrate in area craterica. La storia passata del vulcano suggerisce che la quiescenza può culminare in un eruzione esplosiva che, potenzialmente, può interessare aree molto vaste. Solo nelle immediate vicinanze del vulcano, cioè entro un raggio di 10 km, risiedono circa 600.000 persone, potenzialmente esposte agli effetti significativi di fenomeni vulcanici, quali scorrimento di colate piroclastiche, accumulo di grossi spessori di depositi da caduta e scorrimento di lahars. Questa breve nota ha lo scopo di illustrare, per grandi linee, la storia eruttiva del Somma-Vesuvio, la sua evoluzione morfologica e strutturale e l’impatto delle sue eruzioni sul territorio.
    Description: Published
    Description: 14-21
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: N/A or not JCR
    Description: open
    Keywords: Somma-Vesuvio ; Impatto sul territorio ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Over the last four decades Etna has shown a high output rate through numerous eruptions. The volcano has displayed two eruptive behaviors. The first is characterized by effusive eruptions that efficiently drained the storage system and emitted large volumes of magma, the second behavior is related to lava fountains, erupting small magma batches, which are normally with high frequency and have been considered as precursors of major effusive eruptions. In this paper, we present an updated estimation of emitted volumes from Etna eruptions, which include the 38 lava fountain episodes that occurred from January 2011 to April 2013. These recent explosive episodes have been frequent, discharging significant magma volumes. Observing the steady trend of magma output over time, we present insights on expected erupted volumes. We highlight that the January 2011 –April 2013 lava fountains, efficiently drained the intermediate-shallow storage system and favored a balance between the incoming and outgoing magma.
    Description: Published
    Description: 6069–6073
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: Eruption mechanisms and flow emplacement ; Volcanic hazards and risks ; volcano monitoring ; erupted volumes ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: (extended abstract)
    Description: INGV, Regione Sicilia, Ministero Sviluppo Economico
    Description: Published
    Description: Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Sicily
    Description: open
    Keywords: Geodynamics ; Volcano-seismic correlation ; Seismic and volcanic risk ; Earth rotation and volcano-seismic events ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.02. Earth rotation ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Volcanic rift zones, characterized by repeated dike emplacements, are expected to delimit the upper portion of unstable flanks at basaltic edifices. We use nearly two decades of InSAR observations excluding wintertime acquisitions, to analyze the relationships between rift zones, dike emplacement and flank instability at Etna. The results highlight a general eastward shift of the volcano summit, including the northeast and south rifts. This steadystate eastward movement (1-2 cm/yr) is interrupted or even reversed during transient dike injections. Detailed analysis of the northeast rift shows that only during phases of dike injection, as in 2002, does the rift transiently becomes the upper border of the unstable flank. The flank's steady-state eastward movement is inferred to result from the interplay between magmatic activity, asymmetric topographic unbuttressing, and east-dipping detachment geometry at its base. This study documents the first evidence of steady-state volcano rift instability interrupted by transient dike injection at basaltic edifices.
    Description: Partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”). ERS and ENVISAT SAR data were provided by ESA through the Cat-1 project no. 4532 and the GEO Supersite initiative. The DEM was obtained from the SRTM archive. ERS-1/2 orbits are courtesy of the TU-Delft, The Netherlands. SAR data processing has been done at IREACNR, partially carried out under contract “Volcanic Risk System (SRV)” funded by the Italian Space Agency (ASI).
    Description: Published
    Description: L20311
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: flank instability ; rift zones ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Volcanic emissions are considered one of the major natural sources of several trace metals (e.g. As, Cd, Cu, Pb, and Zn) to the atmosphere [Nriagu, 1989], and the geochemical cycles of these elements have to be considered strongly influenced by volcanic input. However, the accurate estimation of the global volcanic emissions of volatile trace metals into the atmosphere is still affected by a high level of uncertainty. The latter depends on the large variability in the emission of the different volcanoes, and on their changing stage of activity. Moreover, only few of the potential sources in the world have been directly measured [Hinkley et al. 1999]. Atmospheric deposition processes (wet and dry) are the pathways through which volcanic emissions return to the ground (soils, plants, aquifers), resulting in both harmful and beneficial effects [Baxter et al. 1982; Aiuppa et al. 2000; Brusca et al. 2001; Delmelle, 2003; Bellomo et al. 2007; Martin et al. 2009; Floor et al. 2011; Calabrese et al. 2011]. In the first part of this study we present the results of a literature review on trace metals emissions from active volcanoes around the world. In the second part, we present new data on the fluxes of the trace metals from Etna (Italy) and four active volcanoes in the world: Turrialba (Costarica), Nyiragongo (DRC), Mutnovsky and Gorely (Kamchatka). We found 27 publications (the first dating back to the 70’s), 13 of which relate to the Etna and the other include some of the world’s most active volcanoes: Mt. St. Helens, Erebus, Merapi, White Island, Kilauea, Popocatepetl, Galeras, Indonesian arc, Satasuma and Masaya. The review shows that currently there are very few data available, and that the most studied volcano is Mt. Etna. Using these data, we defined a range of fluxes for As, Ba, Bi, Cd, Cu, Fe, Mn, Pb, Se, V and Zn (Figure 1). To obtain new data we sampled particulate filters at the five above mentioned volcanoes. Filters were mineralized (acid digestion) and analyzed by ICP-MS. Sulphur to trace element ratios were related to sulphur fluxes to indirectly estimate trace elements fluxes. Etna confirms to be one of the greatest point sources in the world. The Nyiragongo results to be also a significant source of metals to the atmosphere, especially considering its persistent state of degassing from the lava lake. Also Turrialba and Gorely have high emission rates of trace metals considering the global range. Only Mutnovsky Volcano show values which are sometimes lower than the range obtained from the review, consistent with the fact that it is mainly a fumarolic field. This work highlights the need to expand the current dataset including many other active volcanoes for a better constraint of global trace metal fluxes from active volcanoes.
    Description: Published
    Description: Nicolosi (Catania)
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Volcanic degassing ; trace elements ; environmental impact of volcanic activity ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Volcanic emissions represent one of the most relevant natural sources of trace elements to the troposphere, both during and between eruptions. Due to their potential toxicity they may have important environmental impacts from the local to the global scale. Mount Etna, the largest European volcano and one of the most active volcano in the world, covers an area of about 1250 km2 and reaches an altitude of about 3340 m. It has been persistently active during historical time, with frequent paroxysmal episodes separated by passive degassing periods. Atmospheric precipitation was collected approximately every two weeks, from April 2006 to December 2007, using a network of five rain gauges, located at various altitudes on the upper flanks around the summit craters of Etna Volcano. The collected samples were analysed for major (Ca, Mg, K, Na, F, SO4, Cl, NO3) and a large suite of trace elements (Ag, Al, As, Au, B, Ba, Be, Bi, Cd, Co, Cr, Cs, Cu, Fe, Hg, La, Li, Mn, Mo, Ni, Pb, Rb, Si, Sb, Sc, Se, Sr, Th, Ti, Tl, U, V, Zn) by using different techniques (IC, SPEC, ICP-MS and CV-AFS). The monitoring of atmospheric deposition gave the opportunity to occasionally sample volcanic fresh ashes emitted by the volcano during the paroxysmal events. This was possible because the network of five rain gauges were equipped with a filter-system to block the coarse material. In this way, more than twenty events of ashfall were collected. Unfortunately, only half of these samples were suitable for a complete chemical analysis, because of the small amount of sample. In order to obtain elemental chemical composition of ashes, powdered samples were analysed by a combination of methods, including X-ray Fluorescence Spectroscopy (XRF), total digestion followed by Inductively Coupled Plasma Emission Mass Spectrometry (ICP-MS), Instrumental Neutron Activation Analysis (INAA), and infrared detection (IR). The chemistry of rainwater reveals that most of the investigated elements have higher concentrations close to the emission vent of the volcano, confirming the prevailing volcanic contribution. Rainwater composition clearly reflects the volcanic plume input. Ash-normalised rainwater composition indicates a contrasting behaviour between volatile elements, which are highly-enriched in rainwater, and refractory elements, which have low rainwater/ash concentration ratios. The degree of interaction between collected ash and rainwater was variable, depending on several factors: (i) the length of the period in which tephra was present in the sampler (the ash fall may have occurred any day from the first to the last day of the rain collecting period); (ii) the amount of rainwater fallen on the collectors after the ash-fall event, and its acidity; (iii) the granulometry of the ash samples that was widely variable (from few centimetres to micrometric particles) increasing the interaction with decreasing dimensions of the grains; (iv) the distance of collector with respect to the craters. In order to investigate the role of volcanic ash on the evolution of the rainwater chemistry, absolute concentrations of rain and ash were plotted in binary plot diagrams (Figure 1). Each diagram corresponds to a single event, and pH and TDS of the solution collected is reported. The diagonal bars in the diagrams represent the rain/ash ratios (1:1 and 1:10000). The results confirm that sulphate and halide salt aerosols are adsorbed onto ash particles, and their rate of dissolution in rainwater depends on solubility. Moreover, rapid chemical weathering of the silicate glass by volcanic acid (SO2, HCl and HF) can also explain the enrichment of several refractory elements (Na, K, Ca, Mg, Si, Al, Fe, Ti, Sc). Our observations highlight how explosive activity can increase enormously the deposition rate of several chemical elements, up to several km away from the emission vents.
    Description: Published
    Description: Nicolosi (Catania)
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: volcanic ash ; trace elements ; environmental impact of volcanic activity ; rainwater chemistry ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Many accounts, anecdotal and statistical, have noted a causal effect on volcanic eruptions from large, not too distant, earthquakes. Physical mechanisms have been proposed that explain how small static stress changes, or larger transient dynamic stress changes, can have observable effects on a volcano. While only ∼0.4% of eruptions appear to be directly triggered within a few days of an earthquake, these physical mechanisms also imply the possibility of delayed triggering. In the few regional studies conducted, data issues (selection bias and scarcity, inhomogeneity, and cleaning of data) have tended to obscure any clear signal. Using a perturbation technique, we first show that the Indonesian volcanic region possesses no statistically significant coupling for the region as a whole. We then augment a number of point process models for eruption onsets by a time‐, distance‐, and earthquake magnitude–dependent triggering term and apply this to the individual volcanoes. This method weighs both positive and negative (i.e., absence of eruptions following an earthquake) evidence of triggering. Of 35 volcanoes with at least three eruptions in the study region, seven (Marapi, Talang, Krakatau, Slamet, Ebulobo, Lewotobi, and Ruang) show statistical evidence of triggering over varying temporal and spatial scales, but only after the internal state of the volcano is accounted for. This confirms that triggering is fundamentally a property of the internal magma plumbing of the volcano in question and that any earthquake can potentially “advance the clock” toward a future eruption. This is further supported by the absence of any dependence on triggering of the eruption size
    Description: Published
    Description: B05204
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: earthquake eruption interaction ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...