ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology
  • Springer  (2)
  • Wiley-Blackwell  (2)
  • American Chemical Society
  • 2010-2014  (4)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: macroseismic intensity data. A set of 2373 intensity observations from 15 earthquakes is analysed to calibrate non-parametric models for the source and attenuation with distance, the distance being computed from the instrumental epicentres located according to the International Seismological Centre (ISC) catalogue. In a second step, the non-parametric source model is regressed against different magnitude values (e.g. MLH, mb, MS, Mw) as listed in various instrumental catalogues. The reliability of the calibrated model is then assessed by applying the methodology to macroseismic intensity data from 29 validation earthquakes for which bothMLH and mb are available from the Central Asian Seismic Risk Initiative (CASRI) project and the ISC catalogue. An overall agreement is found for both the location and magnitude of these events, with the distribution of the differences between instrumental and intensity-based magnitudes having almost a zero mean, and standard deviations equal to 0.30 and 0.44 for mb and MLH, respectively. The largest discrepancies are observed for the location of the 1985, MLH = 7.0 southern Xinjiang earthquake, whose location is outside the area covered by the intensity assignments, and for the magnitude of the 1974, mb = 6.2 Markansu earthquake, which shows a difference in magnitude greater than one unit in terms of MLH. Finally, the relationships calibrated for the non-parametric source model are applied to assign different magnitude-scale values to earthquakes that lack instrumental information. In particular, an intensity-based moment magnitude is assigned to all of the validation earthquakes.
    Description: Published
    Description: 710-724
    Description: 5.1. TTC - Banche dati e metodi macrosismici
    Description: JCR Journal
    Description: restricted
    Keywords: seismicity and tectonics: seismic attenuarion; Asia ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-10
    Description: Earthquake forecasts are usually underinformed, and can be plagued by uncertainty in terms of the most appropriate model, and parameter values used in that model. In this paper, we explore the application of two different models to the same seismogenic area. The first is a renewal model based on the characteristic earthquake hypothesis that uses historical/palaeoseismic recurrence times, and fixed rupture geometries. The hazard rate is modified by the Coulomb static stress change caused by nearby earthquakes that occurred since the latest characteristic earthquake. The second model is a very simple earthquake simulator based on plate-motion, or fault-slip rates and adoption of a Gutenberg–Richter magnitude–frequency distribution. This information is commonly available even if historical and palaeoseismic recurrence data are lacking. The intention is to develop and assess a simulator that has a very limited parameter set that could be used to calculate earthquake rates in settings that are not as rich with observations of large-earthquake recurrence behaviour as the Nankai trough. We find that the use of convergence rate as a primary constraint allows the simulator to replicate much of the spatial distribution of observed segmented rupture rates along the Nankai, Tonankai and Tokai subduction zones. Although we note rate differences between the two forecast methods in the Tokai zone, we also see enough similarities between simulations and observations to suggest that very simple earthquake rupture simulations based on empirical data and fundamental earthquake laws could be useful forecast tools in information-poor settings.
    Description: Published
    Description: 1673-1688
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Time series analysis ; Spatial analysis ; Probability distributions ; Seismic cycle ; Earthquake interaction ; forecasting, and prediction ; Statistical seismology. ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The Mw 5.7 earthquake that occurred on 12 May 1802 is the only one with Mw ≥ 5.5 located west of Lake Garda in the central-northern part of the Po Plain, Northern Italy, and the strongest event located in the seismic zone 907 of the ZS9 seismogenic zonation of Italy. Current parametric earthquake catalogs locate the event not far from important cities (e.g., Milan) and to sites where nuclear power plants were to be built in the 1980s or could be built in a near future. Although the earthquake parameters seemed sufficiently well constrained, a detailed investigation of documentary sources was performed, in repositories storing the documents of the Napoleonic departments to which the area affected by the earthquake belonged at that time. In the surviving archival series, we found the officers’ correspondence on all the administrative aspects raised by the earthquake. The newly collected records allowed the authors to significantly increase the number of macroseismic intensity data, including new observations in the most damaged area. The results have been then interpreted in terms of both Mercalli–Cancani–Sieberg and EMS98 macroseismic scales. The earthquake parameters were derived applying two different methods in order to get two independent estimates. Earthquake location is confirmed, although the still scarce data available in the area to the east of the epicenter do not permit to reduce the uncertainty to a minimum. According to the Boxer method, the magnitude is now slightly higher, and the source model shows a good agreement with the tectonic setting of the area.
    Description: Published
    Description: 629-651
    Description: 3.10. Storia ed archeologia applicate alle Scienze della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: 1802 earthquake ; Northern Italy ; Historical seismology ; Macroseismic intensity ; Earthquake parameters ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-16
    Description: Earthquake catalogues for Romania supply for 11th–15th century earthquakes located in the region of Vrancea records that consist of a complete set of parameters, including magnitude and depth. Scope of this paper is to verify the reliability and consistency of these parameters with the informative background as explicitly referenced by the catalogues. After retrieving the original sources they mention, the set of data appeared to be related almost exclusively to the Russian plain and too poor to be at the very origin of the parameter assessment. Data for 19th–20th century earthquakes, such as instrumental locations and CMT solutions, added to the understanding of the macroseismic response of the Russian plain to Vrancea earthquakes. On the one hand, the investigation and analysis of historical earthquake records for the fourteen events listed by the catalogues in the 11th–15th centuries has shown that for three earthquakes (1022, 1038, 1258) no primary sources could be traced, and three more earthquakes (1091, 1170 and 1328) are attested only by scarcely reliable records and had to be classified as doubtful, and one (1473) is simply a duplication of the 1471 event. On the other hand, the availability of data on recent earthquakes that may be compared to historical ones in terms of macroseismic effects allowed the authors to agree with the previous catalogue compilers’ solution with regard to both magnitude and depth of the past earthquakes for which do exist reliable primary historical records.
    Description: Published
    Description: 575–604
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: open
    Keywords: Vrancea earthquakes ; 11th-15th earthquakes ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...