ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (105)
  • Inter Research  (70)
  • ASLO (Association for the Sciences of Limnology and Oceanography)
  • American Meteorological Society
  • Springer Nature
  • 2010-2014  (105)
Collection
Source
Years
Year
  • 1
    Publication Date: 2017-06-20
    Description: Growth rates of the cold-water corals (CWC) Madrepora oculata, Lophelia pertusa, Desmophyllum dianthus and Dendrophyllia cornigera were measured over 8 mo under controlled conditions (12°C in the dark, fed 5 times a week) by means of the buoyant weight technique. Additionally, linear growth rates were measured in M. oculata and L. pertusa for 2 and 1 yr, respectively. The weight measurements revealed growth rates, expressed as percent growth per day (mean ± SD), of 0.11 ± 0.04 for M. oculata, 0.02 ± 0.01 for L. pertusa, 0.06 ± 0.03 for D. dianthus and 0.04 ± 0.02 % d–1 for D. cornigera. Growth in M. oculata was significantly higher (p 〈 0.0001) than in the other 3 CWC species. For M. oculata and L. pertusa, also linear growth was recorded. These values (mean ± SD) were 0.014 ± 0.007 and 0.024 ± 0.018 mm d–1 for M. oculata and L. pertusa, respectively. This is the first study that compares the growth rates of 4 different CWC species under the same experimental conditions of water flow, temperature, salinity and food supply. These corals have different growth rates, both in terms of total weight increase and linear increase, and these growth rates can be related to interspecific physiological differences. Data on growth rates are essential to understand the population dynamics of CWC as well as the recovery capacity of these communities after disturbance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-26
    Description: Mucus, a complex composed primarily of carbohydrates, is released in similar quantities by scleractinian warm- and cold-water reef corals, and can function as an important carrier of organic material from corals to a range of consumers, microbes in particular. However, information about mucus chemical composition is rare for warm-water corals and non-existent for cold-water corals. This study therefore presents comparative carbohydrate composition analyses of mucus released by the dominant and cosmopolitan warm- and cold-water coral genera. Arabinose was the major mucus carbohydrate component for the genus Acropora, but was not found in cold-water coral mucus. Mucus derived from corals of the genus Fungia contained significantly more fucose than the mucus of all other coral genera. However, comparison of mucus carbohydrate composition for the warm- and cold-water corals in the present study and in the literature revealed no significant differences. This indicates use of similar carbohydrate components (with the exception of arabinose) during mucus synthesis by scleractinian corals, largely irrespective of zooxanthellate or azooxanthellate carbon supply mechanisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-29
    Description: Insects with complex life-cycles should optimize age and size at maturity during larval development. When inhabiting seasonal environments, organisms have limited reproductive periods and face fundamental decisions: individuals that reach maturity late in season have to either reproduce at a small size or increase their growth rates. Increasing growth rates is costly in insects because of higher juvenile mortality, decreased adult survival or increased susceptibility to parasitism by bacteria and viruses via compromised immune function. Environmental changes such as seasonality can also alter the quantitative genetic architecture. Here, we explore the quantitative genetics of life history and immunity traits under two experimentally induced seasonal environments in the cricket Gryllus bimaculatus. Seasonality affected the life history but not the immune phenotypes. Individuals under decreasing day length developed slower and grew to a bigger size. We found ample additive genetic variance and heritability for components of immunity (haemocyte densities, proPhenoloxidase activity, resistance against Serratia marcescens), and for the life history traits, age and size at maturity. Despite genetic covariance among traits, the structure of G was inconsistent with genetically based trade-off between life history and immune traits (for example, a strong positive genetic correlation between growth rate and haemocyte density was estimated). However, conditional evolvabilities support the idea that genetic covariance structure limits the capacity of individual traits to evolve independently. We found no evidence for G × E interactions arising from the experimentally induced seasonality.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Previous studies have suggested that phytoplankton play an important role in the biogeochemical cycling of iodine, due to the appearance of iodide in the euphotic zone. Changes in the speciation of iodine over the course of the growth cycle were examined in culture media for a variety of phytoplankton taxa (diatoms, dinoflagellates and prymnesiophytes). All species tested showed the apparent ability to reduce iodate to iodide, though production rates varied considerably between species (0.01 to 0.26 nmol l–1 µg–1 chl a d–1), with Eucampia antarctica the least and Pseudo-nitzschia turgiduloides the most efficient iodide producers. Production was found to be species specific and was not related to biomass (indicated by e.g. cell size, cell volume, or chl a content). In all species, except for the mixotrophic dinoflagellate Scrippsiella trochoidea, iodide production commenced in the stationary growth phase and peaked in the senescent phase of the algae, indicating that iodide production is connected to cell senescence. This suggests that iodate reduction results from increased cell permeability, which we hypothesize is due to subsequent reactions of iodate with reduced sulphur species exuded from the cell. A shift from senescence back to the exponential growth phase resulted in a decline in iodide and indicated that phytoplankton-mediated oxidation of iodide to iodate was likely to be occurring. Iodide production could not be observed in healthy cells kept in the dark for short periods. Bacterial processes appeared to play only a minor role in the reduction of iodate to iodide.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 58 (5). pp. 1640-1656.
    Publication Date: 2019-09-23
    Description: During the discovery and description of seven New Zealand methane seep sites, an infaunal assemblage dominated by ampharetid polychaetes was found in association with high seabed methane emission. This ampharetid-bed assemblage had a mean density of 57,000 ± 7800 macrofaunal individuals m−2 and a maximum wet biomass of 274 g m−2, both being among the greatest recorded from deep-sea methane seeps. We investigated these questions: Does the species assemblage present within these ampharetid beds form a distinct seep community on the New Zealand margin? and What type of chemoautotrophic microbes fuel this heterotrophic community? Unlike the other macro-infaunal assemblages, the ampharetid-bed assemblage composition was homogeneous, independent of location. Based on a mixing model of species-specific mass and isotopic composition, combined with published respiration measurements, we estimated that this community consumes 29–90 mmol C m−2 d−1 of methane-fueled biomass; this is 〉 290 times the carbon fixed by anaerobic methane oxidizers in these ampharetid beds. A fatty acid biomarker approach supported the finding that this community, unlike those previously known, consumes primarily aerobic methanotrophic bacteria. Due to the novel microbial fueling and high methane flux rates, New Zealand's ampharetid beds provide a model system to study the influence of metazoan grazing on microbially mediated biogeochemical cycles, including those that involve greenhouse gas emissions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-12-31
    Description: Sensitivity of marine crustaceans to anthropogenic CO2 emissions and the associated acidification of the oceans may be less than that of other, especially lower, invertebrates. However, effects on critical transition phases or carry-over effects between life stages have not comprehensively been explored. Here we report the impact of elevated seawater PCO2 values (3100 µatm) on Hyas araneus during the last 2 weeks of their embryonic development (pre-hatching phase) and during development while in the consecutive zoea I and zoea II larval stages (post-hatching phase). We measured oxygen consumption, dry weight, developmental time and mortality in zoea I to assess changes in performance. Feeding rates and survival under starvation were investigated at different temperatures to detect differences in thermal sensitivities of zoea I and zoea II larvae depending on pre-hatch history. When embryos were pre-exposed to elevated PCO2 during maternal care, mortality increased about 60% under continued CO2 exposure during the zoea I phase. The larvae that moulted into zoea II, displayed a developmental delay by about 20 days compared to larvae exposed to control PCO2 during embryonic and zoeal phases. Elevated PCO2 caused a reduction in zoea I dry weight and feeding rates, while survival of the starved larvae was not affected by the seawater CO2 concentration. In conclusion, CO2 effects on egg masses under maternal care carried over to the first larval stages of crustaceans and reduced their survival and development to levels below those previously reported in studies exclusively focussing on acute PCO2 effects on the larval stages.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 57 (3). pp. 809-825.
    Publication Date: 2016-04-29
    Description: To investigate diel calcium carbonate (CaCO3) dynamics in permeable coral reef sands, we measured pore-water profiles and fluxes of oxygen (O2), nutrients, pH, calcium (Ca2+), and alkalinity (TA) across the sediment-water interface in sands of different permeability at Heron Reef, Australia. Background flushing rates were high, most likely as a result of infaunal burrow irrigation, but flux chamber stirring enhanced pore-water exchange. Light and pore-water advection fueled high rates of benthic primary production and calcification in sunlit surface sediments. In the light, benthic photosynthesis and calcification induced surface minima in Ca2+ and TA and peaks in pH and O2. Oxygen penetration depth in coarse sands decreased from ∼ 1.2 cm during the day to ∼ 0.6 cm at night. Total oxygen uptake (TOU) in dark chambers was three to fourteen times greater than diffusive uptake and showed a direct effect of pore-water advection. Greater sediment oxygen consumption rates were observed in higher permeability sands. In the dark, TA release was not stimulated by increasing TOU because of a damping effect of pore-water advection on metabolic CaCO3 dissolution efficiency. On a daily basis, CaCO3 undergoes net dissolution in Heron Reef sands. However, pore-water advection can reverse the CaCO3 budget and promote CaCO3 preservation under the most energetic conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 512 . pp. 89-98.
    Publication Date: 2018-06-25
    Description: In complex ecosystem models, relationships between species include a large number of direct interactions and indirect effects. In order to unveil some simple and better understandable relationships, it is useful to study the asymmetry of inter-specific effects. We present a simple approach for this based on stochastic food web simulations from previous studies. We refer to the Prince William Sound (Gulf of Alaska) marine ecosystem model for illustration. Real data were used to parameterize a dynamical food web model. Through simulations and sensitivity analysis, we determined the strength of the effects between all species. We calculated the asymmetry between the mutual effects species have on each other, and selected the top 5% most asymmetrical interactions. The set of these highly asymmetrical relationships is illustrated by a separate graph in which we calculated the positional importance of the species and correlated this to other independent properties such as population size and trophic position. Results suggest that halibut is the key species dominating this system of asymmetrical interactions, but sablefish and adult arrowtooth flounder also seem to be of high importance. Nearshore demersals display the highest number of connections in the graph of asymmetrical links, suggesting that this trophic group regulates the dynamics of many species in the food web. This approach identifies key interactions and most asymmetrical relationships, potentially increasing the efficiency of management efforts and aiding conservation efforts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 401 . pp. 77-85.
    Publication Date: 2018-06-19
    Description: Traditionally, consumer–prey interactions have been considered as purely negative, but herbivores may have positive effects on plants and their productivity. Grazing may enhance prey biomass-specific productivity by directly or indirectly reducing the competition for light, nutrients, and space. We studied the effect of 4 common mesograzers, the isopod Idotea baltica, the amphipod Gammarus oceanicus, and the gastropods Littorina littorea and Rissoa membranacea on epiphytes in an eelgrass Zostera marina L. system. Eelgrass was grown in laboratory mesocosms for a set of experiments manipulating mesograzer species identity, mesograzer density and nutrient concentration. We measured epiphyte biomass-specific productivity via incorporation of radioactive carbon. Herbivore effects on epiphyte photosynthetic capacity were strongly positive for R. membranacea, moderately positive for L. littorea and I. baltica and zero for G. oceanicus under low nutrient supply. Both gastropods increased the nitrogen content of epiphytes, especially the small R. membranacea, and enhanced epiphyte growth. The crustacean species did not increase epiphyte nutrient content, but I. baltica probably enhanced epiphyte productivity by removing the overstory of algal cells, and thus reducing competition for light, nutrients, and space. The positive effect of the 2 gastropod species disappeared under higher nutrient supply, implying the importance of nutrient limitation for this interaction. The positive effect of I. baltica remained at moderate grazer densities despite the higher nutrient concentrations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 408 . pp. 47-53.
    Publication Date: 2019-09-23
    Description: Previous studies on trait-mediated trophic interactions in marine ecosystems were restricted to pair-wise interactions between one species of meso-herbivore and plant, though multi-grazer interactions are more common in nature. We investigated whether the feeding of one consumer, either the periwinkle Littorina littorea or the isopod Idotea baltica, affected consumption by the other consumer via anti-herbivory defence induction in the brown seaweed Fucus vesiculosus. To test the generality of our findings, we ran similar experiments with seaweed/grazer populations in the North and Baltic Seas (NE Atlantic). Grazer-specificity in induction strength was assessed by using the same species of grazer for induction and consumption. ‘Indirect’ induction effects were assessed by using different species of grazers for induction and consumption. Palatability assays were run with live algae and with reconstituted food to distinguish between different mechanisms of resistance. Grazing by herbivores induced a chemical defence in F. vesiculosus. In the North Sea population, the induced defences were only effective against I. baltica, regardless of inducer identity. The sensitive responses of I. baltica to the induced defences were also detected in the reconstituted food assays using Baltic Sea organisms. Thus, marine meso-grazers may be affected by previous feeding through the same or a different species of consumer by modified prey traits, such as induced chemical defences. Furthermore, the magnitude of the effect in the induced defences can be determined by species-specific sensitivity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...