ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (18)
  • In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers
  • 2010-2014  (18)
Collection
  • Data  (18)
Keywords
Years
Year
  • 11
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The TIPTIMON seismic deployment in Afghanistan aimed to study the seismotectonics of the Hindu Kush and the Tajik-Afghan basin. Within this network 8 seismic stations were deployed between 2013 to 2014 to study shallow and intermediate depth seismicity. TIPTIMON (Tien Shan-Pamir Monitoring) is a research programme funded by the German Federal Ministry of Education and Research (BMBF) within the CAME Programme (Central Asia - Monsoon dynamics and Geo-ecosystems). All stations were equipped with MARK L-4C-3D geophones and DSS CUBE recorders, continuously recording with 100 samples per second. Waveform data is available from the GEOFON data centre, under network code 6C, and is embargoed until Oct 2018.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: approx. 275GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Ketzin in a small town 20km west of Berlin that hosts a research facility for underground storage. Starting in 2008 the site was used to investigate the onshore geological storage of carbon dioxide (Liebscher et al., 2013). Among a large variety of downhole monitoring measurements and repeated 3D seismics above the storage formation, a seismic network was installed to investigate the possibility of monitoring subsurface processes related to the injection of CO2 with passive seismic recordings (Gassenmeier et al., 2015). The network was operated for 12 month from early 2011 to 2012 and consisted of 10 Guralp broadband sensors of the Geophysical Instrument Pool Potsdam (GIPP). Five instruments were located at the drilling site and five instruments were installed at a distance up to 3.5km around the injection site. The Instruments were either installed in basements or buried at a depth of about 70cm (KTE, KTF and KTG). The installation was supported by the German Federal Ministry of Education and Research (BMBF, grant 03G0736A) by the University of Leipzig and the GIPP.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Germany ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~240G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-11-27
    Description: Abstract
    Description: We installed two seismological broadband arrays on the volcanic oceanic island of Madeira and in western Portugal on continental crust for a comparison and combination with a deep ocean broadband array installed for seismicity analysis and structure imaging of the oceanic plate environment around the Gloria fault in the Northeast Atlantic with broadband arrays. The data of the deep ocean array are published separately. Waveform data are available from the GEOFON data centre, under network code Y7 under CC-BY 4.0 license.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: ~150Gb
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The network consists of 5 stations covering the volcanic cone flanks. These stations were operative during one year with the final purpose of detect likely changes in the seismic activity of Lascar after the 2014 Iquique earthquake. Waveform data are available from the GEOFON data centre, under network code 8E, and are embargoed until 001 2019.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: Greater than 40 GB
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The lithosphere of Iberia has been formed through a number of processes of continental collision and extension. In Lower Paleozoic, the collision of three tectonics blocks produced the Variscan Orogeny, the main event of formation of the Iberian lithosphere. The subsequent Mesozoic rifting and breakup of the Pangea had a profound effect on the continental crust of the western border of Iberia. Since the Miocene, the southern interaction between Africa and Iberia is characterized by a diffuse convergent margin that originates a vast area of deformation. The impact of this complex tectonic in the structure of the Iberian Lithosphere remains an incognito, especially in its western part beneath Portugal. While the surface geology is considerably studied and documented, the crustal and lithospheric structures are not well constrained. The existing knowledge relating the observed surface geology and Lithospheric deep structures is sparse and sometimes incoherent. The seismic activity observed along West Iberia is intensely clustered on few areas, namely on north Alentejo, Estremadura and Regua-Verin fault systems. Some of the problems to address are: What is the relation between surface topography and the deep crustal/lithospheric structure? How was it influenced by the past tectonic events? Which was the deep driving factor behind the tectonic units observed at surface: Lithosphere-Astenosphere boundary structure or deeper mantle structure? How the upper mantle and the Lithosphere-Astenosphere transition zone accommodated the past subduction? Which is its role and influence of the several tectonic units, and their contacts, in the present tectonic regime and in the stress field observed today? Is the anomalous seismicity and associated crustal deformation rates, due to an inherited structure from past orogenies? The main goal of this work is a 3D detailed image of the “slice” of the Earth beneath Western Iberia, by complementing the permanent seismic networks operating in Portugal and Spain. The different scales involved require the usage of several passive seismological methods: Local-Earthquake Tomography for fine structure of seismogenic areas, ambient noise tomography for regional crustal structure, Receiver Functions for Lithospheric structure and Surface-wave tomography for large scale Listosphere-Astenosphere structure. Crustal and Mantle seismic anisotropy analysis, coupled with source analysis and correlation with current geodetic measurements will allow establishing a reference 3D anisotropy model of present and past processes.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Western Iberia ; seismotectonics ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-02-08
    Description: Abstract
    Description: We carried out a passive seismic experiment formed by 50 broadband and short-period stations with an interstation distance of 3-4 km. These stations were in operation for 22 months, from 06/2013 to 05/2015. The seismic array (TRANSCORBE) was deployed in a linear configuration of 170 km length in a NW-SE direction. The southern edge of the prolife is located near the Mediterranean coast in Mazarrón (Murcia) crossing the Alhama de Murcia fault and the Cazorla Mountain range in the north. The main goal of this project is to study the crustal and upper mantle structures under the Eastern Betics mountain ranges and their variations along the different geological domains. It probes, from southeast to northwest, the Alboran domain (metamorphic rocks), the External zones (sedimentary rocks) and the Variscan terrains of the Iberian Massif. The proposed scientific work includes the analysis of the data using mainly P and S receiver functions, and velocity and attenuation tomographic techniques. The study area has undergone a complex tectonic evolution where slow WNW-ESE oblique convergence of Iberian and African plates coexists with a rapid westward rollback of a subducting slab. The inter-station distance allows us obtaining high-resolution images of the crustal structure essential to understand the tectonic evolution of the area and how the deformation produced by these processes is distributed among the involved geologic domains. This experiment was the results of a joint effort between the Instituto Andaluz de Geofísica (IAG), Granada University, and GFZ Potsdam. Waveform data are available from the GEOFON data centre, under network code 9H and are embargoed until Jan 2021.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~150Gb
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-02-08
    Description: Abstract
    Description: This project investigates the crust and upper mantle along a north-south oriented, about 350 km long profile from around the town of Ringkøbing in western Jutland to south of Hamburg in northwestern Germany, with a focus on teleseismic receiver functions and seismic tomography. A number of tectonic processes have affected the crust and uppermost mantle beneath southern Scandinavia and northern Germany: Precambrian crustal accretion in southern Baltica, Caledonian collision between Baltica and Avalonia along the Tornquist Suture Zone (TSZ), followed by Variscan collision and formation of the North German and the Norwegian-Danish basins, and more recent magmatic activity to the south. This study is particularly focused on the closure of the Tornquist Sea and the Caledonian collision between Baltica and Avalonia. A total of 29 stations, provided by GFZ and the University of Aarhus, were deployed between autumn 2010 and summer 2012, of which 25 form the main profile, and 4 are positioned in an off-line location. Waveform data are available from the GEOFON data centre, under network code ZW, and are available under CC-BY 4.0 license according to GIPP-rules.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-10-20
    Description: Abstract
    Description: KivuSNet represents the first dense broadband seismic network installed in the Kivu Rift region, which is located in the bordering region of the Democratic Republic of Congo and Rwanda. Here the active volcanoes Nyamulagira (the most active in Africa) and Nyiragongo (host to the largest persistent lava lake on Earth) threaten the city of Goma and neighbouring agglomerations, and destructive earthquakes can also affect the region. The deployement started with the first stations in 2012/2013 and since October 2015, 13 stations are operated with real-time data transmission. The development of KivuSNet has been carried out in the framework of several research projects and is in particular associated with the project REmote Sensing and In Situ detection and Tracking of geohazards (RESIST), funded by the Belgian Science Policy and the National Research Fund of Luxembourg. KivuSNet aims at opening a new window for the seismological knowledge in this highly active rifting region, allowing for unprecedented insights into tectonic and volcanic seismicity, tremor patterns and Earth structure as well as for sustainable real-time monitoring of the volcanoes in the area. Together with the often co-located KivuGNet geodetic stations, KivuSNet closes a dramatic observational gap in this region. Waveform data is available from the GEOFON data centre, under network code KV. Embargo policy: - All data before 1 August 2019 remain under embargo until 1 August 2024; - Data acquired from 1 August 2019 onwards are opened 3 years after their acquisition, progressively in 1-months batches (e.g. Data from August 2019 would be opened on 1 September 2022, data from September 2019 would be opened on 1 October 2022 etc.) - For any access request to data that are still under embargo, written permission of the RESIST project partners is needed.
    Keywords: Seismic monitoring ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~2.5T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...