ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (44)
  • Rijeka : InTech  (35)
  • Chantilly, Va. : Mineralogical Society of America  (9)
  • 2010-2014  (44)
  • 1905-1909
  • Geosciences  (42)
  • Chemistry and Pharmacology  (2)
  • Electrical Engineering, Measurement and Control Technology
Collection
  • Books  (44)
Source
Language
Years
Year
Topic
  • 1
    Description / Table of Contents: This volume presents an extended review of the topics conveyed in a short course on Geothermal Fluid Thermodynamics held prior to the 23rd Annual V.M. Goldschmidt Conference in Florence, Italy (August 24–25, 2013). Geothermal fluids in the broadest sense span large variations in composition and cover wide ranges of temperature and pressure. Their composition may also be dynamic and change in space and time on both short and long time scales. In addition, physiochemical properties of fluids such as density, viscosity, compressibility and heat capacity determine the transfer of heat and mass by geothermal systems, whereas, in turn, the physical properties of the fluids are affected by their chemical properties. Quantitative models of the transient spatial and temporal evolution of geochemical fluid processes are, therefore, very demanding with respect to the accuracy and broad range of applicability of thermodynamic databases and thermodynamic models (or equations of state) that describe the various datasets as a function of temperature, pressure, and composition. The application of thermodynamic calculations is, therefore, a central part of geochemical studies of very diverse processes ranging from the aqueous geochemistry of near surface geothermal features including chemosynthesis and thermal biological activity, through the utilization of crustal reservoirs for CO2 sequestration and engineered geothermal systems to the formation of magmatic-hydrothermal ore deposits and, even deeper, to the de-volatilization of subducted oceanic crust and the transfer of subduction fluids and trace elements into the mantle wedge. Application of thermodynamics to understand geothermal fluid chemistry and transport requires essentially three parts: first, equations of state to describe the physiochemical system; second, a geochemical model involving minerals and fluid species; and, third, values for various thermodynamic parameters from which the thermodynamic and chemical model can be derived. The two biggest current hurdles for comprehensive geochemical modeling of geothermal systems are …
    Pages: Online-Ressource (X, 350 Seiten)
    ISBN: 9780939950911
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: sedimentary basin formation ; earth and planetary sciences
    Description / Table of Contents: This book is devoted to the mechanisms of sedimentary basin formation on active plate margins, which show enormous diversity reflecting complex tectonic processes. Multidisciplinary approach pursuing basin-forming mechanism is based on geology, sedimentology, geochronology and geophysics. Some chapters are dedicated to the genetic analysis of sedimentary basins in wrench deformation zones in forearc and intra-arc regions. Another block of chapters deals with basin formation in peripheral regions of Eurasia and intra-arc / foreland basins under the influence of the fluctuation of stress regimes. Finally geophysical approaches to basin analyses are shown in some chapters from microscopic to regional scales. Diverse contents of the chapters provide the audience with the present accomplishments of basin researches on active margins by Earth scientists.
    Pages: Online-Ressource (304 Seiten)
    ISBN: 9789535111931
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Unknown
    Rijeka : InTech
    Keywords: earth and planetary sciences ; oceanography and atmospheric sciences
    Description / Table of Contents: Oceanography is the par excellence interdisciplinary science thanks to its peculiar setting within a fluid environment that makes connections extremely efficient. The oceans connections are well mirrored in the chapters of this book that share a quite explicit multidisciplinary and multi-environmental character. The book provides chapters on very different topics under very different settings, some with a focused angle, others with a broader approach, yet all sharing the idea that we need to understand the small pieces in order to put together the big picture for a much larger mechanism, the functioning of the ocean as a whole.
    Pages: Online-Ressource (155 Seiten)
    ISBN: 9789535111795
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Description / Table of Contents: The chapters in this volume represent a compilation of the material presented by the invited speakers at a short course on August 21-23, 2011 called “Sulfur in Magmas and Melts and its Importance for Natural and Technical Processes.” This Mineralogical Society of America and the Geochemical Society sponsored short course was held at the Hotel der Achtermann, in Goslar, Germany following the 2011 Goldschmidt Conference in Prague, Czech Republic. Following a nice overview in chapter 1 by the organizers Harald Behrens and James Webster, this volume is divided into 4 parts. 1. Analytical and Spectroscopic Methods -- chapters 2 and 3 2. Physical and Chemical Properties of S-Bearing Silicate Melts -- chapters 4-7 3. Constraints from Natural and Experimental Systems -- chapters 8-11 4. Natural and Technical Applications -- chapters 12-16
    Pages: Online-Ressource (xiv , 578 Seiten)
    ISBN: 9780939950874
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Description / Table of Contents: 'Building materials' as a generic term encompasses steel, aluminum, copper and a range of metal alloys, glass and glaze, particulate materials like sand, gravel, or crushed rock, and natural stone of sedimentary, igneous or metamorphic origin. Each of these materials sees a wide range of applications, from structural/bearing via functional to merely ornamental and decorative. The wide range of 'building materials' application is achieved through an equally wide range of processing, from use 'as is' (e.g., stacking boulders to make a retaining wall), through simple re-dimensioning and fitting (e.g., splitting and sizing of roofing slate) to purification and complex treatment in multi-stage processing (e.g., glass, Portland cement clinker, concreting). The use of building materials, their applications and processing has changed considerably with the development of civilization and technology. Consequently, comprehensive coverage of building materials, applications, processing and history would require multiple volumes. This volume contains a selection of papers on the applied mineralogy of cement and concrete, by far the most popular modern building material by volume, with an annual production exceeding 9 billion cubic meters, and steadily growing. Not even all 'concrete' topics can be covered by a single volume, but an interesting assortment was finally obtained. The seven chapters deal with mineralogy and chemistry of (alumina) clinker production and hydration (Pöllmann), alternative raw clinkering materials to reduce CO2 emission (Justnes), assessment of clinker constituents by optical and electron microscopy (Stutzman), industrial assessment of raw materials, cement and concrete using X-ray methods in different applications (Meier et al.), in situ investigation of clinker and cement hydration based on quantitative crystallographic phase analysis (Aranda et al.), characterization and properties of supplementary cementitious materials (SCMs) to improve cement and concrete properties (Snellings et al.), and deleterious alkali-aggregate reaction (AAR) in concrete (Broekmans).
    Pages: Online-Ressource (x ; 364 Seiten)
    ISBN: 9780939950881
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Description / Table of Contents: The chapters in this volume represent an extensive review of the material presented by the invited speakers at a short course on Theoretical and Computational Methods in Mineral Physics held prior (December 10-12, 2009) to the Annual fall meeting of the American Geophysical Union in San Francisco, California. The meeting was held at the Doubletree Hotel & Executive Meeting Center in Berkeley, California. Mineral physics is one of the three pillars of geophysics, the other two being geodynamics and seismology. Geophysics advances by close cooperation between these fields. As such, mineral physicists investigate properties of minerals that are needed to interpret seismic data or that are essential for geodynamic simulations. To be useful, mineral properties must be investigated in a wide range of pressures, temperatures, and chemical compositions. The materials and conditions in the interior of Earth and other terrestrial planets present several challenges. The chemical composition of their mantles is complex with at least five major oxide components and tens of solid phases. Today, these challenges are being addressed by a combination of experimental and computational methods, with experiments offering precise information at lower pressures and temperatures, and computations offering more complete and detailed information at conditions more challenging to experiments. While bulk properties of materials are fundamental to understanding a planet’s state, atomistic inspection of these complex materials are fundamental to understanding their properties. A connection is then established between atomic and planetary scale phenomena, which mineral physicists are in a unique position to appreciate. This book presents a set of review articles offering an overview of contemporary research in computational mineral physics. Fundamental methods are discussed and important applications are illustrated. The opening chapter by John Perdew and Adrienn Ruzhinszky discusses the motivation, history, and expressions of Kohn-Sham Density Functional Theory (DFT) and approximations for exchange and correlation. This is the established framework for investigation of a condensed matter system’s ground state electronic density and energy. It also discusses the recent trend to design higher-level semi-local functionals, with solid state applications in mind. It presents arguments in favor of semi-local approximations for condensed matter and discusses problematic cases where fully non-local approximations are needed. The following article by Yan Zhao and Donald Truhlar, demonstrates current research in search of appropriate exchange and correlation energy functionals. It reviews the performance of families of local, semi-local, and fully non-local exchange and correlation functionals: the so-called “Minnesota” functionals. These new functionals have been designed to give broad accuracy in chemistry and perform very well in difficult cases where popular functionals fail badly. The prospects for their successful applications are encouraging. Stefano Baroni, Paolo Gianozzi, and Eyvaz Isaev, introduce Density Functional Perturbation Theory, a suitable technique to calculate vibrational properties of extended materials using a combination of density functional theory and linear response techniques. This method gives very accurate phonon frequencies which, in combination with the quasi-harmonic approximation, allow one to study thermal properties of materials. The next chapter by Renata Wentzcovitch, Yonggang Yu, and Zhongqing Wu review the applications of density functional perturbation theory to the investigation thermodynamic properties and phase relations in mantle minerals. The series of studies summarized in this review have explored the accuracy of DFT within its most popular approximations for exchange and correlation energy in combination with the quasiharmonic approximation to offer results with useful accuracy for geophysical studies. The following article by Renata Wentzcovitch, Zhongqing Wu, and Pierre Carrier, summarizes the combination of the quasiharmonic approximation with elasticity theory to investigate thermoelastic properties of minerals at conditions of the Earth interior. Some unfamiliar but essential aspects of the quasiharmonic approximation are discussed. Thermoelastic properties of minerals are essential to interpret seismic observations. Therefore, some examples of interpretation of seismic structures are reviewed. The article by David Ceperley, returns to the fundamental theme of calculations of ground state energy in condensed matter and introduces Quantum Monte Carlo methods. These methods treat exactly the quantum many-body problem presented by a system of electrons and ions. They treat electrons as particles rather than a scalar charge-density field, as done by DFT. These are computationally intensive methods but the only exact ones. The following article by Lubos Mitas and Jindrich Kolorenc, reviews applications of these methods to transition metals oxides, materials that have some aspects in common with mantle minerals. One of the examined systems, FeO, is a most important component of mineral solid solutions. Matteo Cococcioni continues exploring the same theme. He discusses a modified density functional useful for addressing cases like FeO, which are untreatable by standard DFT. The DFT + Hubbard U method (DFT+U) is a practical approximate method that enables investigations of electronically and structurally complex systems, like minerals. The application of this method to a contemporary and central problem in mineral physics, pressure and temperature induced spin-crossovers in mantle minerals, is reviewed in the next chapter by Han Shu, Koichiro Umemoto, and Renata Wentzcovitch. The geophysical implications of the spin-crossover phenomenon, an electronic transition, are still unclear but some possibilities are suggested. Michael Ammann, John Brodholt, and David Dobson discuss simulations of bulk ionic diffusion. This property plays an important role in chemical exchange between and within crystalline and melt phases. It plays an important role in the kinetics of phase transitions, compositional zoning, mineral growth, and other important geochemical processes. It can also control rheological properties, especially in the diffusion creep regime, and thus the time scale of mantle convection. This is a very difficult property to investigate at combined pressures and temperature conditions of the mantle, therefore, calculations play a very important role in this area. Phillip Carrez and Patrick Cordier discuss modeling of dislocations and plasticity in deep Earth materials. This article focuses on recent developments in dislocation modeling and applications to our understanding of how the direction of mantle flow is recorded in polycrystalline texture. Next, the article by Stephen Stackhouse and Lars Stixrude, discusses theoretical methods for calculating lattice thermal conductivity in minerals, which controls the cooling of Earth’s core. Measurements of thermal conductivity at lower mantle conditions are very challenging to experiments and calculations are a valuable alternative to learning about this property. This article describes the most common methods to calculate this property and presents a review of studies of the lattice thermal conductivity of periclase. Artem Oganov discusses the prediction of high pressure crystal structures. A genetic algorithm for structural prediction is described and numerous applications predicting new phases with novel properties and phases that can explain experimental data so far not understood is presented. This is a most recent development on the subject of structural predictions, a subject that has been pursued by simulations for several decades now. The possibility of predicting structure and composition by this method is also pointed out. Koichiro Umemoto and Renata Wentzcovitch continue on the same theme of structural prediction by a different approach: combination of phonon calculations and variable cell shape molecular dynamics. The former indicates unstable displacement modes in compressed structures; the latter searches for structures resulting from the superposition of these unstable modes to the compressed lattice. This approach is illustrated with the search of mineral structures at multi-Mbar pressures that are still challenging to static or dynamic compression experiments, but have great interest in view of the discovery of terrestrial exoplanets with several Earth masses. The following chapter by Koichiro Umemoto is on simulations of phase transitions on a different class of planet forming material: H2O-ice. Ice has a rich phase diagram but many of its phase relations are unknown: large hysteresis precludes their direct measurements in manageable time scales. Therefore, calculations acquire special significance but they are also challenging, the main reasons being the description of hydrogen bond by DFT and hydrogen disorder. Dario Alfè presents a review of first principles calculations of properties of iron at Earth’s core conditions. This chapter includes examples of applications of multiple techniques used in studies of high temperature properties, structure, and melting lines. Results from Quantum Monte Carlo are compared with those from DFT, and results from molecular dynamics simulations are contrasted with predictions of quasiharmonic theory. These comparisons are instructive and illustrate the breadth of research in computational mineral physics. The following chapter by Bijaya Karki turns to DFT based simulations of another type of melt: ionic silicates and oxides. The article discusses the methodology used in these simulations and specially developed methods to analyze the results. The properties of interest are high temperature equations of state, thermodynamics properties, atomic and electronic structure, and self-diffusion and viscosity. Visualization of atomic motion is one of the valuable approaches discussed to gain insight into changes in melt structure with pressure and temperature. These studies are illustrated for 3 melts along the MgO-SiO2 join. The following three articles are devoted primarily to the introduction of inter-atomic potentials of broad applicability and relatively high accuracy, and applications to large scale simulations. The first article by Julian Gale and Kate Wright describes the current status of the derivation of force-fields and their applications to static and lattice dynamic calculations in mineral physics. This is done in the context of the General Utility Lattice Program (GULP), which has become quite popular. A selection of applications illustrating the possibilities of this code is then presented. Victor Vinograd and Bjoern Winkler illustrate another important type of application of force-field models: an efficient cluster expansion method to investigate binary mineral solid solutions. The article focuses on a rock-salt system but the technique is general. This type of problem is central to mineral physics and ingenious combinations of first principles methods, force-field models, and purely parameterized free energy expressions, combined with molecular dynamics and Monte Carlo techniques are necessary to address this problem. The predictive treatment of properties of ionic solid solutions is a major challenge in mineral physics. Mark Ghiorso and Frank Spera discuss long duration large scale molecular dynamics simulations using empirical pair-potentials. This article illustrates the concrete requirements on the number of atoms and time scales necessary to obtain information on transport properties such as shear viscosity and lattice thermal conductivity using Green-Kubo theory. These more than 1000-atom and pico-second simulations also improve the statistics in the estimation of equilibrium properties. Finally, the article by Lars Stixrude and Carolina Lithgow-Bertelloni on the thermodynamics of Earth’s mantle, gives an overview of how the elucidation of materials behavior governs planetary processes. It explains how the complexity of the Earth’s mantle demands methods that are complementary to first principles calculations and experiments. These methods must allow one to interpolate among and extrapolate from results on minerals with limited compositions to the full chemical richness of the silicate mantle. It then illustrates how the derived properties of multi-phase multi-component systems are used to address mantle heterogeneity on multiple length scales, ranging from that of the subducting slab to the possibility of mantle-wide radial variations in bulk composition.
    Pages: Online-Ressource (xviii , 484 Seiten)
    ISBN: 9780939950850
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: earthquake ; seismology ; geology ; geophysics ; earthquake engineering
    Description / Table of Contents: This book deals with earthquake-resistant structures, such as, buildings, bridges and liquid storage tanks. It contains twenty chapters covering several interesting research topics written by researchers and experts in the field of earthquake engineering. The book covers seismic-resistance design of masonry and reinforced concrete structures to be constructed as well as safety assessment, strengthening and rehabilitation of existing structures against earthquake loads. It also includes three chapters on electromagnetic sensing techniques for health assessment of structures, post earthquake assessment of steel buildings in fire environment and response of underground pipes to blast loads. The book provides the state-of-the-art on recent progress in earthquake-resistant structures. It should be useful to graduate students, researchers and practicing structural engineers.
    Pages: Online-Ressource (536 Seiten)
    ISBN: 9789535101239
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: earth and planetary sciences ; geology and geophysics ; seismology ; earthquake ; earthquake engineering ; geotechnics
    Description / Table of Contents: This book sheds lights on recent advances in Geotechnical Earthquake Engineering with special emphasis on soil liquefaction, soil-structure interaction, seismic safety of dams and underground monuments, mitigation strategies against landslide and fire whirlwind resulting from earthquakes and vibration of a layered rotating plant and Bryan's effect. The book contains sixteen chapters covering several interesting research topics written by researchers and experts from several countries. The research reported in this book is useful to graduate students and researchers working in the fields of structural and earthquake engineering. The book will also be of considerable help to civil engineers working on construction and repair of engineering structures, such as buildings, roads, dams and monuments.
    Pages: Online-Ressource (436 Seiten)
    ISBN: 9789535100256
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Unknown
    Rijeka : InTech
    Keywords: natural gas ; energy
    Description / Table of Contents: Natural gas is a vital component of the world's supply of energy and an important source of many bulk chemicals and speciality chemicals. It is one of the cleanest, safest, and most useful of all energy sources, and helps to meet the world's rising demand for cleaner energy into the future. However, exploring, producing and bringing gas to the user or converting gas into desired chemicals is a systematical engineering project, and every step requires thorough understanding of gas and the surrounding environment. Any advances in the process link could make a step change in gas industry. There have been increasing efforts in gas industry in recent years. With state-of-the-art contributions by leading experts in the field, this book addressed the technology advances in natural gas industry.
    Pages: Online-Ressource (554 Seiten)
    ISBN: 9789535105077
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: clay ; mineralogy
    Description / Table of Contents: Clay is an abundant raw material which has a variety of uses and properties depending on their structure and composition. Clay minerals are inexpensive and environmentally friendly naturally occurring nanomaterials, thanks to their 1 nm thick silicate layers, in all types of sediments and sedimentary rocks. The book chapters have been classified according to their characteristics in topics and applications. Therefore, in the first section five chapters is dedicated to the characterization and utilization of clay minerals in deposits. The second section includes four chapters about the significance of clay minerals in soils. Third section is devoted to different aspects of clay minerals research, especially to the characterization of structure and modifications for their application.
    Pages: Online-Ressource (326 Seiten)
    ISBN: 9789535107385
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...