ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oceanic mixing  (23)
  • Chemistry
  • Inorganic Chemistry
  • Kartoffeln
  • NOISE
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (24)
  • 2010-2014  (24)
  • 1920-1924
Collection
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2013
    Description: Large-scale thermal forcing and freshwater fluxes play an essential role in setting temperature and salinity in the ocean. A number of recent estimates of the global oceanic freshwater balance as well as the global oceanic surface net heat flux are used to investigate the effects of heat- and freshwater forcing at the ocean surface. Such forcing induces changes in both density and density-compensated temperature and salinity changes (’spice’). The ratio of the relative contributions of haline and thermal forcing in the mixed layer is maintained by large-scale surface fluxes, leading to important consequences for mixing in the ocean interior. In a stratified ocean, mixing processes can be either along lines of constant density (isopycnal) or across those lines (diapycnal). The contribution of these processes to the total mixing rate in the ocean can be estimated from the large-scale forcing by evaluating the production of thermal variance, salinity variance and temperature-salinity covariance. Here, I use new estimates of surface fluxes to evaluate these terms and combine them to generate estimates of the production of density and spice variance under the assumption of a linear equation of state. As a consequence, it is possible to estimate the relative importance of isopycnal and diapycnal mixing in the ocean. While isopycnal and diapycnal processes occur on very different length scales, I find that the surface-driven production of density and spice variance requires an approximate equipartition between isopycnal and diapycnal mixing in the ocean interior. In addition, consideration of the full nonlinear equation of state reveals that surface fluxes require an apparent buoyancy gain (expansion) of the ocean, which allows an estimate of the amount of contraction on mixing due to cabbeling in the ocean interior.
    Description: The author would like to acknowledge support from the National Aeronautics and Space Administration, grant #NNX12AF59G and the National Science Foundation, grant #OCE-0647949.
    Keywords: Oceanic mixing ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2013
    Description: Physical oceanographers have known for several decades the total amount of abyssal mixing and upwelling required to balance the deep-water formation, but are still working to understand the mechanisms and locations—how and where it happens. From observational studies, we know that areas of rough topography are important and the hundreds of Grand-Canyon sized canyons that line mid-ocean ridges have particularly energetic mixing. To better understand the mechanisms by which rough topography translates into energetic currents and mixing, I studied diffusive boundary layers over varying topography using theoretical approaches and idealized numerical simulations using the ROMS model. In this dissertation, I show a variety of previously unidentified characteristics of diffusive boundary layers that are likely relevant for understanding the circulation of the abyssal ocean. These boundary layers share many important properties with observed flows in abyssal canyons, like increased kinetic energy near topographic sills and strong currents running from the abyssal plains up the slopes of the mid-ocean ridges toward their crests. They also have a previously unknown capacity to accelerate into overflows for a variety of oceanographically relevant shapes and sizes of topography. This acceleration happens without external forcing, meaning such overflows may be ubiquitous in the deep ocean. These boundary layers also can force exchange of large volumes of fluid between the relatively unstratified boundary layer and the stratified far-field fluid, altering the stratification far from the boundary. We see these effects in boundary layers in two– and three–dimensions, with and without rotation. In conclusion, these boundary layer processes, though previously neglected, may be a source of a dynamically important amount of abyssal upwelling, profoundly affecting predictions of the basin-scale circulation. This type of mechanism cannot be captured by the kind of mixing parameterizations used in current global climate models, based on a bottom roughness. Therefore, there is much work still to do to better understand how these boundary layers behave in more realistic contexts and how we might incorporate that understanding into climate models.
    Description: I gratefully acknowledge the financial support of the NSF Graduate Research Fellowship Program and WHOI Academic Programs.
    Keywords: Oceanic mixing ; Upwelling
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1996
    Description: The water mass distribution in the southwestern Barents Sea, the thermohaline structure of the western Barents Sea Polar Front, and the formation of local water masses are described based on an analysis of historical hydrographic data and a recent process-oriented field experiment. This study concentrated on the frontal region between Bj0rn0ya and Hopen Island where Arctic water is found on the Spitzbergen Bank and Atlantic Water in the Bear Island Trough and Hopen Trench. Distributions of Atlantic, Arctic, and Polar Front waters are consistent with topographic control of Atlantic water circulation. Seasonal buoyancy forcing disrupts the topographic control in the surface layer, altering the frontal structure, and affecting local water mass formation. In the winter, the topographic control is firmly established and both sides of the front are vertically well-mixed. Winter cooling creates sea-ice over Spitzbergen Bank and convectively formed Modified Atlantic Water in the Bear Island Trough and Hopen Trench. In the summer, heating melts the sea-ice, producing a surface meltwater pool that can cross the polar front, disrupting topographic control and substantially increasing the vertical thermohaline gradients in the frontal region. The meltwater pool produces the largest geostrophic shear in the region.
    Description: Support for this work was provided by a Department of Defense National Defense Science and Engineering Graduate Fellowship and Office of Naval Research grant N00014- 90-J-1359.
    Keywords: Ocean circulation ; Oceanic mixing ; Climatic changes
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1998
    Description: Planktonic protozoan grazers have the potential to significantly affect the chemistry of particle-associated trace metals. This is due both to the importance of protists as consumers of bacterial-sized particles, and to the unique low-pH, enzyme-rich microenvironment of the grazer food vacuole. This thesis examines the role of protozoan grazers in the marine geochemistry of strongly hydrolyzed, particle-reactive trace metals, in particular Th and Fe. A series of tracer experiments was carried out in model systems in order to determine the effect of grazer-mediated transformations on the chemical speciation and partitioning of radioisotopes C9Fe, 234Th, 51Cr) associated with prey cells. Results indicate that protozoan grazers are equally able to mobilize intracellular and extracellular trace metals. In some cases, protozoan regeneration of trace metals appears to lead to the formation of metal-organic complexes. Protozoan grazing may generate colloidal material that can scavenge trace metals and, via aggregation, lead to an increase in the metal/organic carbon ratio of aggregated particles. Model system experiments were also conducted in order to determine the effect of grazers on mineral phases, specifically colloidal iron oxide (ferrihydrite). Several independent techniques were employed, including size fractionation ors9Fe-labeled colloids, competitive ligand exchange, and iron-limited diatoms as "probes" for bioavailable Fe. Experimental evidence strongly suggests that protozoan grazing can affect the surface chemistry and increase the dissolution rate of iron oxide phases through phagotrophic ingestion. In further work on protozoan-mediated dissolution of colloidal Fe oxides, a novel tracer technique was developed based on the synthesis of colloidal ferrihydrite impregnated with 133Ba as an inert tracer. This technique was shown to be a sensitive, quantitative indicator for the extent of ferrihydrite dissolution/alteration by a variety of mechanisms, including photochemical reduction and ligand-mediated dissolution. In field experiments using this technique, grazing by naturally occuring protistan assemblages was shown to significantly enhance the dissolution rate of colloidal ferrihydrite over that in non-grazing controls. Laboratory and field results indicate that, when integrated temporally over the entire euphotic zone, protozoan grazing may equal or exceed photoreduction as a pathway for the dissolution of iron oxides.
    Description: This work was financially supported by a Department of Defense ONR-NDSEG Graduate Fellowship, Office ofNaval Research AASERT Award (N00014-94-1-0711), and the National Science Foundation EGB Program (OCE-9523910).
    Keywords: Protozoa ; Water chemistry ; Trace elements in water ; Marine zooplankton ; Chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2012
    Description: The purpose of this study is to understand the interactions of tropical cyclones with ocean eddies. In particular we examine the influence of a cold-core eddy on the cold wake formed during the passage of Typhoon Fanapi (2010). The three-dimensional version of the numerical Price–Weller–Pinkel (PWP) vertical mixing model has previously been used to simulate and study the cold wakes of Atlantic hurricanes. The model has not been used in comparison with observations of typhoons in the Western Pacific Ocean. In 2010 several typhoons were studied during the Impact of Typhoons on the Ocean in the Pacific (ITOP) field campaign and Fanapi was particularly well observed. We use these observations and the 3DPWP to understand the ocean cold wake generated by Fanapi. The cold wake of Fanapi was advected by a cyclonic eddy that was south of the typhoon track. The 3DPWP model outputs with and without an eddy are compared with observations made during the field campaign. These observations are compared to model outputs with eddies in a series of positions right and left of the storm track in order to study effects of mesoscale eddies on ocean vertical mixing in the cold wake of typhoons.
    Keywords: Ocean-atmosphere interaction ; Oceanic mixing ; Roger Revelle (Ship) Cruise RR0912
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1994
    Description: This work investigates whether large-scale coherent vortex structures driven by wave-current interaction (Langmuir circulation) are responsible for maintaining the oceanic mixed layer. Langmuir circulations dominate the near-surface vertical transport of momentum and density when the characteristic scale for forcing (defined as the Craik-Leibovich instability parameter γCLS) is stronger than the characteristic scale for diffusive decay γdiff. Since the wave-current forcing is concentrated near the surface both terms depend on the cell geometry. Cells with long wavelengths penetrate more deeply into the water column. These cells grow more slowly than the fastest growing mode for most cases, but always dominate the solution in the absence of Coriolis forces. In the presence of Coriolis forces, the horizontal wavelength and thus the depth of penetration are limited. When a cell geometry is found such that γCLS » γdiff, the current profile produced by small-scale diffusion is unstable to Langmuir cells and the cells replace small-scale diffusion as the dominant vertical transport mechanism for momentum and density. The perturbation crosscell shear is predicted to scale as γCLS. Such a scaling is observed during two field experiments. The observed velocity profile during these experiments is more sheared than predicted by a model which implicitly assumes instantaneous mixing by large eddies, but less sheared than predicted by a model which assumes small-scale mixing by near-isotropic turbulence. The latter profile is unstable to Langmuir cells when waves are present. The inclusion of cells driven by wave-current interaction explains the failure of the mixed layer to restratify on two days with high waves and low wind. Wave-current interaction introduces a small but efficient source of energy for transporting density which goes as the surface stress times the Stokes drift.
    Description: The Office of Naval Research supported me throughout graduate school, first as an ONR Graduate Fellow. and later as a research assistant under the Surface Waves Processes Program (ONR Grant N00014-90-J-1495).
    Keywords: Ocean circulation ; Oceanic mixing ; Acania (Ship) Cruise ; Wecoma (Ship) Cruise W
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 1989
    Description: Argon measurements, obtained from three years of monthly detailed vertical profiles near Bermuda (Station S, 32°N 64°W), show a maximum in argon supersaturation of about 4% in the seasonal thermocline in late summer. Since the argon supersaturation is 3-4 times smaller than that of oxygen, most of the oxygen supersaturation is not of physical origin and hence must result from biological production. In the winter mixed layer, air injection produces argon supersaturation despite high gas exchange rates. During spring and summer, radiative heating, air injection, and an upward argon flux create an even larger supersaturation in the mixed layer. In the seasonal thermocline, radiative heating creates argon supersaturations that persist in spite of vertical mixing. The observed seasonal cycles of temperature, argon, helium, and oxygen are simulated with an upper ocean model. I linearize the model's response to variations in vertical diffusivity, air injection, gas exchange rate, and new production and then use an inverse technique (singular value decomposition) to determine the values of these parameters that best fit the data. Results for the 1985-1987 average are as follows: A vertical turbulent diffusivity of 1.0 ± 0.1 x 10-4 m2 s-1 is consistent with both the thermal history and subsurface argon distribution. The rate of air injection, determined to ±15%, is similar to previous estimates. The seasonally-averaged gas exchange rate, determined to ± 11%, is consistent within errors with that predicted by Liss and Merlivat (1986). I estimate a lower limit to depth-integrated new production below the mixed layer of 5.0 ± 1.0 moles 0 2 m-2 yr-1 , and obtain an estimate of 6.2 ± 0.9 moles 0 2 m-2 yr-1 if new production in the mixed layer is fixed at zero. The period 1985-1987 appears to be typical of the climatological mean conditions at Station S and comparable to the 1960-1970 average period analyzed by Jenkins & Goldman (1985) and Musgrave et al. (1988). I propose that a mesoscale anticyclonic eddy is responsible for excess 3He and nitrate in the euphotic zone observed at a July, 1986 occupation of the Station S site. Hydrographic profiles are consistent with a type of eddy observed by Brundage & Dugan (1986), characterized by an unusually thick lens of subtropical mode (18°C) water. Analysis of the 35 year hydrographic record suggests that such eddies may arrive at Station S with an average frequency of 2-6 times per year, mostly during the summer and in years of vigorous 18°C water formation. Their timing and character suggest that they may be formed during winter convection events in the northeastern Sargasso Sea, advected southwestward by the gyre-scale circulation, and eventually absorbed by the Gulf Stream. Their magnitude and frequency indicate that they may supply a significant portion of the 3He and nutrient flux into the euphotic zone near Bermuda, and suggest a mechanism by which newly formed subtropical mode water is incorporated within the gyre interior. However, enhanced new production in such eddies could account for only a small portion of the new production integrated over the Sargasso Sea.
    Description: This project has been supported by grant OCE85-01171 from the National Science Foundation.
    Keywords: Oceanic mixing
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution October 1993
    Description: In this thesis, production of dense water that feeds the dense overflows across the Greenland-Scotland Ridge has been considered. A new circulation scheme is developed which is consistent with the water masses, currents and air-sea fluxes in the region, and with the important observation that the dense overflows show little or no seasonal or interannual variability. An inverse box model has been constructed that shows that the new circulation scheme is consistent with conservation statements for mass, heat and salt as well. According to the new circulation scheme the major buoyancy is lost in the North Atlantic Current, which enters the Norwegian Sea between Iceland and Scotland, and flows northward towards the Arctic Ocean and the Barents Sea. The transformation is due to a large net annual heat loss over the North Atlantic Current, combined with a long residence time (2-3 years) and a large surface area. After subduction, one branch of the North Atlantic Current enters the Arctic Ocean, is modified in hydrographic properties into those associated with the Denmark Strait Overflow Waters in the western North Atlantic, exits the Arctic Ocean in the western Fram Strait and flows with the East Greenland Current towards the Denmark Strait Another branch of the North Atlantic Current recirculates directly in the Fram Strait and flows towards the Denmark Strait with the East Greenland Current This branch will not sink to the bottom of the North Atlantic as it is less compressible than the Arctic branch. The third branch of the North Atlantic Current enters the Barents Sea, continues to lose buoyancy, and enters the Arctic Ocean at intermediate depth. This branch exits the Arctic Ocean in the western Fram Strait, circulates around the Greenland Sea, enters the Norwegian Sea, and flows towards the Frer¢-Shetland Channel. The traditional view holds that the major sources of the dense overflows are the Iceland and Greenland gyres, west of the North Atlantic Current. Aside from the finding that the new circulation scheme is more likely in terms of water mass properties, currents etc., one fundamental problem with the old scheme lies with supplying a substantial overflow. There are indications that the production of dense water in the gyres is sensitive to the highly variable surface conditions and that indeed the production tends to shut on and off. The reservoirs in the gyres are so small that they would be drained within a few years if they were to supply the overflows during a shutdown period. Production of dense water within the North Atlantic Current is less sensitive to surface conditions. The density in the gyres is gained at a temperature around freezing, whereas in the North Atlantic Current the density is gained well above freezing. Therefore a freshwater anomaly in the two domains will have different consequences for vertical · overturning: within the North Atlantic Current the freshening can be overcome by further cooling, whereas in the gyres freezing will occur and the vertical overturning will cease. The observed lack of a significant seasonal signal associated with the dense overflows is consistent with the new circulations scheme. The net annual cooling dominates the seasonal oscillation in the atmospheric heat loss for time scales comparable with the residence time of the Atlantic Water within the domain. Thus winter formation of dense water within the North Atlantic Current does not induce a seasonal signal in the transport field of the dense water.
    Description: Funding for this work was partly provided by a NASA Global Change Fellowship.
    Keywords: Ocean circulation ; Oceanic mixing ; Water masses ; Knorr (Ship : 1970-) Cruise ; Hudson (Ship) Cruise ; Meteor (Ship) Cruise ; Polarstern (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution November 1992
    Description: Cosmogeruc P-32 (14.28 days) and P-33 (25.3 days) are powerful tracers of upper ocean P cycling, when coupled with time-series of the atmospheric sources. A method was developed to determine the low-level beta activities in rainwater and plankton. The wet deposition rates of P-32 and P-33 were determined during 12 months at a marine site, at Bermuda, coinciding with measurements of the activities and activity ratio P-33/P-32 in suspended particles and plankton tows at BATS station. The in situ production rates of radiophosphorus in the upper ocean were estimated by measuring the activities induced in Cl, K and S targets by cosmic rays. Knowledge of all the sources of radiophosphorus to the Sargasso Sea allowed the cycling of P-32 and P-33 in suspended particles and macrozooplankton to be studied. The study was based on the determination of the activity ratio P-33/P-32 in different particulate pools. The activity ratio was higher in particle collections dominated by higher levels in the food web. The increase in the ratio in plankton relative to rain allowed the determination of the turnover times of P in plankton and in situ grazing rates.
    Description: Funding for this research was provided by NSF (grants OCE-8800957. OCE- 8817836 and OCE-902284), DOE (grant DE-FG02-88ER60681), Woods Hole Oceanographic Institution, Ocean Venture Funding of Woods Hole Oceanographic Institution and Scurlock Funds of Mr Arch Scurlock to MIT/WHOI Joint Program.
    Keywords: Phosphorus ; Radioisotopes in oceanography ; Chemical oceanography ; Oceanic mixing ; Ocean-atmosphere interaction ; Weatherbird II (Ship) Cruise ; Endeavor (Ship: 1976-) Cruise EN235
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1993
    Description: A turbulent mixing experiment was conducted to observe the dynamics and the energetics of layer formation along with the region of layer formation in the Reynolds number (Re) and the overall Richardson number (Rio) space. A salt stratified fluid was mixed uniformly throughout its depth with a vertical rod that moved horizontally at a constant speed. The evolution of density was measured with a conductivity probe. As the instability theory of Phillips (1972) and Posmentier (1977) shows, an initially uniform density profile turns into a series of steps when Rio is larger than a critical value Ric, which forms a stability boundary. For fixed Re, as Rio decreases to Ric, the steps get weaker; the density difference across the interface and the difference of density gradient between layers and interfaces become small. Ric increases as Re increases with a functional relation log Ric ≈ Re/900. The steps evolve over time, with small steps forming first, and larger steps appearing later through merging and decay of the interfaces. After some time the interior seems to reach an equilibrium state and the evolution of the interior steps stops. The length scale of the equilibrium step, ls, is a linear function of U /Ni, where U is the speed of the rod and Ni is the buoyancy frequency of the initial profile. The functional relationship is ls = 2.6U / Ni + l.Ocm. For Rio 〈 Ric, the mixing efficiency, Rf, monotonically decreases to the end of a run. However, for Rio 〉 Ric, the evolution of Rf is closely related to the evolution of the density field. Rf changes rapidly during the initiation of the steps. For Rio » Ric, R1 increases initially, while for Rio ≥ Ric, Rf ecreases initially. When the interior reaches an equilibrium state, Rf becomes uniform. Posmentier (1977) theorized that when steps reach an equilibrium state, a density flux is independent of the density gradient. The present experiments show a uniform density flux in the layered interior irrespective of the density structure, and this strongly supports the theory of Posmentier. The density flux generated in the bottom boundary mixed layer goes through the interior all the way to the top boundary mixed layer without changing the interior density structure. Thus, turbulence can transport scalar properties further than the characteristic length scale of active eddies without changing a density structure. When the fluid becomes two mixed layers, the relation between Rf and Ril was found for Ril 〉 1. Here, Ril is the local Richardson number based on the thickness of the interface. R, does decrease as Ril increases, which is the most crucial assumption of the instability theory.
    Keywords: Turbulence ; Oceanic mixing
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1995
    Description: Fluctuations in light intensity due to vertical mixing in the open ocean surface layer will affect phytoplankton physiology. Conversely, indicators of phytoplankton photoacclimation will be diagnostic of mixing processes if the appropriate kinetics are known. A combination of laboratory and field experimental work, field observations, and theoretical models were used to quantify the relationship between vertical mixing and photoacclimation in determining the time and space evolution of single cell optical properties for the photosynthetic picoplankton, Prochlorococcus spp. Diel time-series observations from the Sargasso Sea reveal patterns in single-cell fluorescence distributions within Prochlorococcus spp. populations which appear to correspond to decreasing mixing rates and photoacclimation during the day, and increased mixing at night. Reciprocal light shift experiments were used to quantify the photoacclimation kinetics for Prochlorococcus spp. fluorescence. A laboratory continuous culture system was developed which could simulate the effects of mixing across a light gradient at the level of the individual cell. This system was operated at four different simulated diffusivities. Prochlorococcus marinus strain Med4 fluorescence distributions show distinct patterns in the mean and higher moments which are consistent with a simple quasi-steady turbulent diffusionphotoacclimation model. In both, daytime photoacclimation drove the development of a gradient in mean fluorescence, a decrease in variance overall, and skewing of distributions away from the boundaries. These results suggest that picophytoplankton single-cell fluorescence distributions could prove to be a useful diagnostic indicator of the mixing environment.
    Description: This project received primary financial support from the Office of Naval Research, with additional support from the National Science Foundation, the Environmental Protection Agency, Sea Grant, M.I.T. Sloan funds and M.I.T. Department of Civil and Environmental Engineering funds. I also wish to acknowledge support from a Rockwell Fellowship and a National Science Foundation Graduate Fellowship.
    Keywords: Phytoplankton ; Photosynthesis ; Primary productivity ; Acclimatization ; Oceanic mixing ; Oceanus (Ship : 1975-) Cruise OC214 ; Endeavor (Ship: 1976-) Cruise EN232
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1995
    Description: Inverse modeling activities in oceanography have recently been intensified, aided by the oncoming observational data stream of WOCE and the advance of computer power. However, interpretations of inverse model results from climatological hydrographic data are far from simple. This thesis examines the behavior of an inverse model in the WOCE CME (Community Modeling Effort) results where the physics and the parameter values are known. The ultimate hypotheses to be tested are whether the inferred circulations from a climatological hydrographic data set (where limited time means and spatial smoothing are usually used) represent the climatological ocean general circulations, and what the inferred "diffusion" coefficients really are. The inverse model is first tested in a non-eddy resolving numerical GCM ocean. Numerical/scale analyses are used to test whether the inverse model properly represents the GCM ocean. Experiments show how biased answers could result from an incorrect model, and how a correct model must produce the right answers. When the inverse model is applied to the time-mean hydrographic data of an eddy-resolving GCM ocean in the fine grid resolution of the GCM, the estimated horizontal circulation is statistically consistent with the EGCM time means in both patterns and values. Although the flow patterns are similar, the uncertainties for the GCM time means and the inverse model estimates are different. The former are very large, such that the GCM time-mean circulation has no significance in the deep ocean. The latter are much smaller, and with them the estimated circulations are well defined. This is consistent with the concept that ocean motions are very energetic, while variations of tracers (temperature, salinity) are low frequency. The inverse model succeeded in extracting the ocean general circulation from the "climatological" hydrographic data. The estimated vertical velocities are also statistically indistinguishable from the GCM time means. However, significant differences between the estimated "diffusion" coefficients and the EGCM eddy diffusion coefficients are found at certain locations. These discrepancies are attributed to the differences in physics of the inverse model and the EGCM ocean. The "diffusion" coefficients from the inversion parameterize not only the eddy fluxes, but also (part of) the temporal variation and biharmonic terms which are not explicitly included in the inverse model. Given the essentially red spectrum of the ocean, it makes sense to look for smooth solutions. Aliasing due to subsampling on a coarse grid and the effects of spatial smoothing are addressed in the last part of this thesis. It is shown that this aliasing could be greatly reduced by spatial smoothing. The estimated horizontal circulation from the spatially smoothed time-mean EGCM hydrographic data with a coarse grid resolution (2.4° longitude by 2.0° latitude) is generally consistent with the spatially smoothed EGCM time means. Significant differences only occur at some grid points at great depths, where the GCM circulations are very weak. The conclusions of this study are different from some previous studies. These discrepancies are explained in the concluding chapter. Finally, it should be pointed out that the issue of properly representing a GCM ocean by an inverse model is not identical to the issue of represent ing the real ocean by the same inverse model, since the GCM ocean is not identical to the real ocean. Numerical calculations show that both the non-eddy resolving and the eddy-resolving GCM oceans used in this work are evolving towards a statistical equilibrium. In the real ocean, the importance of temporal variation terms in the property conservation equations should also be analyzed when a steady mverse model is applied to a limited time-mean (the climatological) data set.
    Description: This research was carried out under National Science Foundation grant OCE- 90-04396.
    Keywords: Oceanic mixing ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1991
    Description: Based on the Levitus atlas, we find that the application of the Montgomery streamfunction to the isopycnal surfaces induces an error which can not be ignored in some regions in the ocean. The error arises from the sloping effect of the specific volume anomaly along isopycnal surfaces. By including the major part of this effect, new streamfunctions, namely the pressure anomaly and main pressure streamfunctions, are suggested for the use in potential density coordinates. By using the newly proposed streamfunction and by including the variations of specific volume anomaly along isopycnal surfaces, the inverse model proposed by Hogg (1987) is modified for increasing accuracy and applied to the Brazil Basin to study the circulation, diffusion and water mass balances. The equations in the model, i.e. the dynamic equation, continuity equation, integrated vorticity equation, and conservation equations for heat, salt and oxygen (in which a consumption sink term is allowed), are written in centered finite difference form with lateral steps of 2 degree latitude and longitude and 8 levels in the vertical. This system of equations with constraints of positive diffusivities and oxygen consumption rates is solved by the inverse method. The results indicate that the circulation in the upper oceans is consistent with previous works, but that in the deep ocean is quite different. In the NADW region, we find a coincidence of the flows with the tongues of water properties. The diffusivities and diapycnal velocities seem stronger in the region near the equator than in the south, with reasonable values. Diffusion plays an important role in the water mass balance. Examples show that similar property fields may results from different processes.
    Keywords: Ocean circulation ; Oceanic mixing
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1998
    Description: This thesis presents an investigation of the influence of surface waves on momentum exchange. A quantitative comparison of direct covariance friction velocity measurements to bulk aerodynamic and inertial dissipation estimates indicates that both indirect methods systematically underestimate the momentum flux into developing seas. To account for wave-induced processes and yield improved flux estimates, modifications to the traditional flux parameterizations are explored. Modification to the bulk aerodynamic method involves incorporating sea state dependence into the roughness length calculation. For the inertial dissipation method, a new parameterization for the dimensionless dissipation rate is proposed. The modifications lead to improved momentum flux estimates for both methods.
    Description: This project was funded by the Oceanographer of the Navy.
    Keywords: Oceanic mixing ; Ocean-atmosphere interaction
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1995
    Description: Mixing and stirring of passive tracer and Lagrangian particles in the open ocean was studied through comparison of observations from the North Atlantic Tracer Release Experiment, a numerical model, and existing theory. Based on the observed distribution of tracer during the first six months of the NATRE field experiment, Ledwell et al. (1993) estimated that on scales of 1 to 10 km small-scale diffusivity κs ≈ 3 m2s-1 and rms strain rate γ ≈ 3 X 10-7 s-1 . From the observed tracer distribution after one year, Ledwell (personal communication) further estimated that on scales greater than the mesoscale the effective eddy diffusivity κe ≈ 1 x 103 m2s-1. In the present study, statistics of the NATRE float data and numerical simulations of Lagrangian particles and passive tracer were used to determine the biases and uncertainties associated with these estimates. The numerical model was calibrated so that the statistics of model floats agreed as closely as possible with the NATRE floats. It is found that observations of a passive tracer such as were made during the NATRE experiment may be used to determine the rms streak width, δs, and the rms strain rate and hence to estimate the effective small-scale diffusivity. However, caution must be exercised when estimating κs from the theoretical balance, δs = square root κs/γ, as this may introduce a bias which would lead to the over-estimation of κs. Of particular relevance to NATRE is that observations of δs may be biased toward larger estimated rms streak width due to the inability of the observer to distinguish individual streaks from those which have resulted from a recent merger of streaks. Numerical experiments show that such a bias could lead to the over-estimation of κs by up to a factor of 2 to 4, suggesting that the estimate of κs made by Ledwell et al., (1993) from the NATRE tracer observations has an associated uncertainty of similar magnitude. Analysis of NATRE float data indicates that the estimate κe ≈ 1 x 103 m2s-1 inferred from the tracer distribution in Spring, 1993 and Fall, 1994 is accurate to within a factor of 2.
    Description: Support for this work was provided by NSF award number 9005738.
    Keywords: Oceanic mixing
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 1998
    Description: A freshwater plume often forms when a river or an estuary discharges water onto the continental shelf. Freshwater plumes are ubiquitous features of the coastal ocean and usually leave a striking signature in the coastal hydrography. The present study combines both hydrographic data and idealized numerical simulations to examine how ambient currents and winds influence the transport and mixing of plume waters. The first portion of the thesis considers the alongshore transport of freshwater using idealized numerical simulations. In the absence of any ambient current, the downstream coastal current only carries a fraction of the discharged fresh water; the remaining fraction recirculates in a continually growing "bulge" of fresh water in the vicinity of the river mouth. The fraction of fresh water transported in the coastal current is dependent on the source conditions at the river mouth. The presence of an ambient current augments the transport in the plume so that its freshwater transport matches the freshwater source. For any ambient current in the same direction as the geostrophic coastal current, the plume will evolve to a steady-state width. A key result is that an external forcing agent is required in order for the entire freshwater volume discharged by a river to be transported as a coastal current. The next section of the thesis addresses the wind-induced advection of a river plume, using hydrographic data collected in the western Gulf of Maine. The observations suggest that the plume's cross-shore structure varies markedly as a function of fluctuations in alongshore wind forcing. Consistent with Ekman dynamics, upwelling favorable winds spread the plume offshore, at times widening it to over 50 km in offshore extent, while downwelling favorable winds narrow the plume width to a few Rossby radii. Near-surface current meters show significant correlations between cross-shore currents and alongshore wind stress, consistent with Ekman theory. Estimates of the terms in the alongshore momentum equation calculated from moored current meter arrays also indicate an approximate Ekman balance within the plume. A significant correlation between alongshore currents and alongshore wind stress suggests that interfacial drag may be important. The final section of the thesis is an investigation of the advection and mixing of a surface-trapped river plume in the presence of an upwelling favorable wind stress, using a three-dimensional model in a simple, rectangular domain. Model simulations demonstrate that the plume thins and is advected offshore by the crossshore Ekman transport. The thinned plume is susceptible to significant mixing due to the vertically sheared horizontal currents. The first order plume response is explained by Ekman dynamics and a Richardson number mixing criterion. Under a sustained wind event, the plume evolves to a quasi-steady, uniform thickness. The rate of mixing slowly decreases for longer times as the stratification in the plume weakens, but mixing persists under a sustained upwelling wind until the plume is destroyed. Mixing is most intense at the seaward plume front due to an Ekman straining mechanism in which the advection of cross-shore salinity gradients balances vertical mixing. The mean mixing rate observed in the plume is consistent with the mixing power law suggested by previous studies of I-D mixing, in spite of the two-dimensional dynamics driving the mixing in the plume.
    Description: This research was funded by a National Science Foundation graduate fellowship, and Gulf of Maine Regional Marine Research Program grants UM-S227 and UM-S276.
    Keywords: Oceanic mixing ; Hydrography ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1999
    Description: Today, deep waters produced in the North Atlantic are exported through the western South Atlantic. Antarctic intermediate water AAJW also enters the Atlantic in this region. Circumpolar deep water (CDW) fills the depths below AAIW and above and below northern source waters. A depth transect of cores from 1567-3909 m water depth in the western South Atlantic are ideally located to monitor inter-ocean exchange of deep water, and variations in the relative strength of northern versus southern source water production. Last glacial maximum (LGM) Cd/Ca and δ13C data indicate a nutrient-depleted intermediate-depth water mass. In the mid-depth western South Atlantic, a simple conversion of LGM δ13C data suggests significantly less nutrient enrichment than LGM Cd/Ca ratios, but Cd/Ca and δ13C data can be reconciled when plotted in CdW/δ13C space. Paired LGM Cd/Ca and δ13C data from mid-depth cores suggest increasingly nutrient rich waters below 2000 m, but do not require an increase in Southern Ocean water contribution relative to today. Cd/Ca data suggest no glacial-interglacial change in the hydrography of the deepest waters ofthe region. To maintain relatively low Cd/Ca ratios low nutrients in the deepest western South Atlantic waters, and in CDW in general, during the LGM requires an increased supply ofnutrient-depleted glacial North Atlantic intermediate water (GNA1W) and/or nutrient-depleted glacial Subantarctic surface waters to CDW to balance reduced NADW contribution to CDW. LGM Cd/Ca and δ13C data suggest strong GNA1W influence in the western South Atlantic which in turn implies export of GNAIW from the Atlantic, and entrainment of GNA1W into the Antarctic Circumpolar current.
    Keywords: Ocean circulation ; Oceanic mixing
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 1998
    Description: The evolution of a coastal ocean undergoing uniform surface heat loss is examined. The dynamics of this ocean are initially modulated by the intense vertical mixing driven by surface cooling. The strong vertical mixing prevents the formation of geostrophic flows and inhibits the cross-shelf flux of heat. The vertical mixing is eventually suppressed by the advective transport of cold, dense water offshore. Once this happens, alongshore geostrophic flows form, and become baroclinically unstable. The surface heat flux is then balanced by a cross-shelf eddy heat flux. Scales are found for the cross-shelf density gradient which results from this balance. Solutions for linear internal waves are found for a wedge-shaped bathymetry with bottom friction. Bottom friction is capable of entirely dissipating the waves before they reach the coast, and waves traveling obliquely offshore are reflected back to the coast from a caustic. The internal wave climate near two moorings of the Coastal Ocean Dynamics Experiment observation program is analyzed. The high frequency internal wave energy levels were elevated above the Garrett and Munk spectrum, and the spectrum becomes less red as one moves to the shore. The wave field is dominated by vertical-mode one waves, and internal wave energy propagates shoreward.
    Description: This work was funded by an Office of Naval Research fellowship and and Office of Naval Research AASERT fellowship, N00014-95:-1-0746.
    Keywords: Internal waves ; Oceanic mixing ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 1998
    Description: Efforts to understand the Arctic system have recently focused on the role in local and global circulation of waters from the Arctic shelf seas. In this study, steady-state exchanges between the Arctic shelves and the central basins are estimated using an inverse box model. The model accounts for data uncertainty in the estimates, and quantifies the solution uncertainty. Other features include resolution of the two-basin Arctic hydrographic structure two-way shelf-basin exchange in the surface mixed layer, the capacity for shelfbreak upwelling, and recognition that most inflows enter the Arctic via the shelves. Aggregate estimates of all fluxes across the Arctic boundary, with their uncertainties, are generated from flux estimates published between 1975 and 1997. From the aggregate estimates, mass-, heat-, and salt-conserving boundary flux estimates are derived, which imply a net flux of water from the shelves to the basins of 1.2±0.4 Sv. Due primarily to boundary flux data uncertainty, constraints of mass, heat, and salt conservation alone cannot determine how much shelf-basin exchange occurs via dense overflows, and how much via the surface mixed layer. Adding δ180 constraints, however, greatly reduces the uncertainty. Dense water flux from the shelves to the basins is necessary for maintaining steady state, but shelfbreak upwelling is not required. Proper representation of external sources feeding the shelves, rather than the basins, is important to obtain the full range of plausible steady solutions. Implications of the results for the study of Arctic change are discussed.
    Description: This work was supported by National Science Foundation grant OPP-9422292 as part of the Arctic System Science ARCSS program, administered by the Office of Polar Programs.
    Keywords: Oceanic mixing ; Ocean-atmosphere interaction ; Sediments ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1977
    Description: Millimeter scale fluctuations in refractive index recorded with a freely sinking shadowgraph system are correlated with finestructure profiles of temperature, salinity and density and compared to models of ocean turbulence. Images with vertically aligned periodic structure, called bands, are identified as salt fingers, while others with chaotic structure are turbulent. Images are found on interfaces that are 1-10m thick and have gradients at least several times the mean. From 6 profiles in the Mediterranean Outflow region of the eastern North Atlantic between 1.0 and 1.9 km depth, 398 interfaces have been identified and a significant fraction (about 1/3) of these have detectable images. High contrast images, including bands, are most often found below warm, saline intrusions and within stepped structure where there is a regular sequence of homogeneous mixed layers separated by interfaces. As the interfacial salinity gradient increases in the sense that allows salt finger convection, the fraction of interfaces with images increases. The horizontal spacing of bands (~5 mm) is consistent with calculated salt finger diameter. The calculated and observed length of ocean salt fingers (10-20 cm) is a small fraction of the interface thickness. High levels of small scale variability in the shadowgraphs is reflected in high levels of variance in the finestructure band of the temperature spectra. The temperature gradient spectra have a slope of -1, indicative of turbulence affected by buoyancy forces, and there is a relative peak at a wavelength near the observed salt finger length. The high contrast images are found at interfaces within the enhanced mean salinity gradient below saline intrusions. For very strong salinity gradients there is a solitary interface with intense images, but for weaker mean gradients the convection takes the form of stepped structure. The steps may evolve from the solitary interface as the salinity gradient is run down by salt finger convection. This study identifies parts of the ocean where salt finger convection is prevalent and includes the first comprehensive description of salt fingers in the ocean. Existing models of salt fingers are evaluated in light of ocean observations, and models of ocean turbulence are compared to measurements.
    Description: Support from ONR contract N00014-66-C0241 NR. 083-004 is also acknowledged.
    Keywords: Ocean temperature ; Oceanic mixing ; Salinity ; Turbulence ; Atlantis II (Ship : 1963-) Cruise AII76
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1999
    Description: The bottom boundary layer is an important dynamical region of shallow water flows. In this thesis, the problem of turbulent mixing in the coastal bottom boundary layer is investigated with a unique set of field measurements of velocity and sound speed that span a significant fraction of the boundary layer obtained over a six-week long period in the late summer of 1996 on the New England shelf. The energetics of the turbulent fluctuations are investigated by testing simplified budgets for turbulent kinetic energy and scalar variance. The turbulent kinetic energy budget is locally balanced while the scalar variance budget is not, probably due to turbulent diffusion. The direct effects of stratification are consistently significant only in the outer part of the boundary layer, where the flux Richardson number is approximately equal to a critical value of 0.2. Turbulence closure is investigated in terms of non-dimensional profiles of velocity and sound speed. Close to the bottom, the results are consistent with Monin-Obukhov similarity theory, while in the outer part of the boundary layer other scales including the height of the boundary layer are important for setting the turbulent length scale.
    Description: My doctoral work was supported by the Office of Naval Research under grants N000149S10373 and N0001496109S3.
    Keywords: Ocean bottom ; Oceanic mixing ; Turbulent boundary layer ; Continental shelf
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2010
    Description: This paper begins to explore a previously neglected mechanism for abyssal ocean mixing using bottom boundary layer dynamics. Abyssal mixing and the associated upward buoyancy fluxes are necessary to balance the sinking of dense waters at high latitudes and to close the global overturning circulation. Previous studies have concentrated on the hypothesis that the primary mechanism for this mixing is breaking internal waves generated by tidal flows over rough topography. However, intriguing observations, particularly from the Brazil Basin Tracer Release Experiment, suggest that mixing in the flank canyons of the Mid-Atlantic Ridge generated when strong mean flows interact with the many sills and constrictions within the canyons may represent a dynamically important amount of abyssal mixing. The energy pathways and mechanisms of this mixing are much less clear than in the case of breaking internal waves. This study attempts to clarify this by suggesting an analogy with an idealized diffusive boundary layer over a sloping bottom. This boundary layer is characterized by up-slope flows powered by the buoyancy flux in the fluid far from the boundary. Here we explore the energy budget of the boundary layer, and find that the diffusive boundary layer provides flows that are generally consistent with those observed in submarine canyons. In addition, we derive the vertical velocity in the far-field fluid, analogous to an Ekman pumping velocity, that these boundary layers can induce when the bottom slope is not constant. Finally, we present both theoretical and numerical models of exchange flows between the bottom boundary and the far-field flow when the bottom slope is not constant. These exchange flows provide a mechanism by which boundary-driven mixing can affect the overall stratification and buoyancy fluxes of the basin interior.
    Description: I was supported by a NSF Graduate Research Fellowship.
    Keywords: Oceanic mixing ; Abyssal zone
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1987
    Description: This thesis consists of two loosely related problems, both of which analyze some consequences of the failure of Sverdrup relation. In the first part, Chapters 2 and 3, the Sverdrup relation is invalidated because substantial flow is obtained at the bottom where topography exists. The eddies play an essential role in transfering momentum vertically from the surface, where the forcing is applied, to the bottom, which is otherwise unforced. If the topography has a structure in the longitudinal direction, then the inviscid theory predicts the occurence of strong jets in the interior of the model ocean. According to the structure of the topography these internal jets can occur in both vertically homeogenous and baroclinic oceans. If the topographic slope changes sign, then one kind of jets is observed both in stratified and in homogeneous oceans. This phenomenon is robust to moderate amounts of dissipation and is not disturbed by the occurrence of recirculating gyres within the basin. If the topographic slope is constant, then another kind of internal jets is observed, and it occurs in stratified models only. I was unable to observe this kind of jets in the presence of weak dissipation. The reason for this failure is twofold: on one hand friction, especially interfacial friction, tends to make the flow more barotropic (and we believe that indeed this is one of the processes that the eddies accomplish in a stratified fluid) and therefore the phenomena that rely strongly on baroclinicity are discouraged. On the other hand, reduction of the dissipation leads to the onset of a strong recirculating, inertial gyre which, although confined in space, affects the global properties of the flow. In the second part of the thesis (Chapters 4 and 5) I developed a simple model of the recirculating, inertial gyre. Again the dynamics of this feature are far from being in Sverdrup balance. In this case inertia is responsible for the failure of Sverdrup relation, together with the eddy field which provides a mean for transfering momentum vertically and laterally into regions away from where the forcing is applied. In this model there is no direct forcing in the recirculation region, and the input of momentum is confined to the boundary currents surrounding the gyre, for example the separated Gulf Stream. One of the results of the recirculation model is the prediction of its transport. It is shown that most of the transport is depth independent, i.e. it can be calculated without detailed knowledge of the density structure of the ocean. It is also shown that the "barotropic" part of the transport increases as the cube of the meridional extent of the gyre.
    Description: The thesis work has been supported by a National Foundation grant from the Office of Atmospheric Sciences.
    Keywords: Ocean circulation ; Oceanic mixing
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1987
    Description: This thesis studies the role of cross-isopycnal mixing in general circulation dynamics, from both the theoretical and observational points of view. The first two chapters discuss some theoretical aspects of cross-isopycnal mixing in the oceans. In chapter one, an integral constraint relating the interior stratification and air-sea heat fluxes is derived, based on the condition that the total mass of water of given density is constant in a steady state ocean. Two simple models are then used to examine the way the numerically small mixing, together with air-sea fluxes, determines the average vertical density stratification of the oceans, and the deep buoyancy driven circulation. In chapter two, a more complete model of a deep flow driven by cross isopycnal diffusion is presented, motivated by the Mediterranean outflow into the North Atlantic. Mixing in this model is responsible for the determination of the detailed structure of the flow and density field, while in the models of the first chapter it was allowed to determine only the average vertical density stratification. In chapter three, a hydrographic data set from the Mediterranean sea is analyzed by inverse methods. The purpose is to examine the importance of mixing when trying to explain tracer distributions in the ocean. The time-mean circulation and the appropriate mixing coefficients are calculated from the hydrographic data. We conclude that the numerically small cross isopycnal mixing processes are crucial to the dynamics, yet difficult to parameterize and measure using available hydrographic data.
    Description: NSF grants OCE-8521685 and OCE-8017791 supported me during my studies in the joint program.
    Keywords: Oceanic mixing ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...