ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismicity and tectonics  (7)
  • 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution  (5)
  • Industrial Chemistry
  • Inorganic Chemistry
  • Seismology
  • Wiley-Blackwell  (11)
  • 2010-2014  (11)
Collection
Years
Year
  • 1
    Publication Date: 2021-11-25
    Description: Here we inverted the GPS data to infer the coseismic slip of the Tohoku-Oki earthquake and the time-dependent afterslip distribution in the 4 months following the main shock. The Tohoku-Oki earthquake showed an unexpected magnitude and a characteristic depth-dependent differentiation of seismic energy radiation. In this context the estimation and comparison of the distribution of the fault portions that slip coseismically and post-seismically contribute to a better understanding of the variation of frictional characteristics of the plate interface. The inferred coseismic slip extends in a relatively compact region located updip from the hypocentre and reaches its highest value (about 60 m) near the trench. Afterslip occurs mostly outside the coseismic rupture and is distributed in two main modal centres. It reaches its largest values in an area located downdip of the coseismic slip and extends to a depth of 80 km. In the depth range between 30 and 50 km afterslip overlaps the portion of the fault that experienced historical moderate earthquakes, high-frequency seismic radiation and thrust-type aftershocks. The behaviour of this area can be explained by a rheologically heterogeneous region made of a ductile fault matrix interspersed with compact brittle asperities. On the contrary, the region beneath 50–60 km depth is probably characterized by a fully velocity strengthening behaviour. Southern afterslip, located off-Chiba Prefecture, is probably related to the Mw 7.9 Ibaraki-Oki aftershock. The northward extension of the afterslip stops at a latitude of about 40◦ N, just south of the off-Aomori region. This may be related to three large events occurred in this area during the last century and the consequent strong coupling or complete depletion of the accumulated strain that characterize this region.
    Description: Published
    Description: 580-596
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Satellite geodesy; Seismic cycle; Earthquake source observations; Subduction zone processes ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-09
    Description: Episodic gas seepage occurs at the seafloor in the Gulf of Izmit (Sea of Marmara, NW Turkey) along the submerged segment of the North Anatolian Fault (NAF), which ruptured during the 1999 Mw7.4 Izmit earthquake, and caused tectonic loading of the fault segment in front of the Istanbul metropolitan area. In order to study gas seepage and seismic energy release along the NAF, a multiparametric benthic observatory (SN-4) was deployed in the gulf at the western end of the 1999 Izmit earthquake rupture, and operated for about 1 yr at 166 m water depth. The SN-4 payload included a three-component broad-band seismometer, as well as gas and oceanographic sensors. We analysed data collected continuously for 161 d in the first part of the experiment, from 2009 October to 2010 March. The main objective of our work was to verify whether tectonic deformation along the NAF could trigger methane seepage. For this reason, we considered only local seismicity, that is, within 100 km from the station. No significant (ML ≥ 3.6) local earthquakes occurred during this period; on the other hand, the seismometer recorded high-frequency SDEs (short duration events), which are not related to seismicity but to abrupt increases of dissolved methane concentration in the sea water that we called MPEs (methane peak events). Acquisition of current velocity, dissolved oxygen, turbidity, temperature and salinity, allowed us to analyse the local oceanographic setting during each event, and correlate SDEs to episodic gas discharges from the seabed. We noted that MPEs are the result of such gas releases, but are detected only under favourable oceanographic conditions. This stresses the importance of collecting long-term multiparametric time-series to address complex phenomena such as gas and seismic energy release at the seafloor. Results from the SN-4 experiment in the Sea of Marmara suggest that neither low-magnitude local seismicity, nor regional events affect intensity and frequency of gas flows from the seafloor.
    Description: Published
    Description: 850-866
    Description: 1T. Geodinamica e interno della Terra
    Description: 3A. Ambiente Marino
    Description: 7A. Geofisica di esplorazione
    Description: JCR Journal
    Description: restricted
    Keywords: Time-series analysis ; Seismicity and tectonics ; Broad-band seismometers ; multiparametric seafloor observatory ; Izmit Gulf ; Sea of Marmara ; gas seepage ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2003. Published by Oxford University Press on behalf of The Royal Astronomical Society. All rights reserved.
    Description: In this study, we modify and extend a data analysis technique to determine the stress orientations between data clusters by adding an additional constraint governing the probability algorithm. We apply this technique to produce a map of the maximum horizontal compressive stress (S_Hmax) orientations in the greater European region (including Europe, Turkey and Mediterranean Africa). Using the World Stress Map dataset release 2008, we obtain analytical probability distributions of the directional differences as a function of the angular distance, θ. We then multiply the probability distributions that are based on pre-averaged data within θ〈3° of the interpolation point and determine the maximum likelihood estimate of the S_Hmax orientation. At a given distance, the probability of obtaining a particular discrepancy decreases exponentially with discrepancy. By exploiting this feature observed in the World Stress Map release 2008 dataset, we increase the robustness of our S_Hmax determinations. For a reliable determination of the most likely S_Hmax orientation, we require that 90% confidence limits be less than ±60° and a minimum of three clusters, which is achieved for 57% of the study area, with small uncertainties of less than ±10° for 7% of the area. When the data density exceeds 0.8×10^-3 data/km2, our method provides a means of reproducing significant local patterns in the stress field. Several mountain ranges in the Mediterranean display 90° changes in the S_Hmax orientation from their crests (which often experience normal faulting) and their foothills (which often experience thrust faulting). This pattern constrains the tectonic stresses to a magnitude similar to that of the topographic stresses.
    Description: This work was supported by the DPC-INGV 2008-2010 S1 project, the EU-FP7 project “Seismic Hazard Harmonization in Europe” (SHARE; Grant agreement no. 226967), and project MIUR-FIRB "Abruzzo" (code: RBAP10ZC8K_003).
    Description: Published
    Description: 3.1. Fisica dei terremoti
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: partially_open
    Keywords: Neotectonics ; Seismicity and tectonics ; Fractures and faults ; Intra-plate processes ; Plate motions ; Dynamics: gravity and tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We find that geodetic strain rate (SR) integrated with the knowledge of active faults points out that hazardous seismic areas are those with lower SR, where active faults are possibly approaching the end of seismic cycle. SR values estimated from GPS velocities at epicentral areas of large historical earthquakes in Italy decrease with increasing elapsed time, thus highlighting faults more prone to reactivation. We have modelled an exponential decrease relationship between SR and the time elapsed since the last largest earthquake, differencing historical earthquakes according to their fault rupture style. Then, we have estimated the characteristic times of relaxation by a non-linear inversion, showing that events with thrust mechanism exhibit a characteristic time (∼ 990 yr) about three times larger than those with normal mechanism. Assuming standard rigidity and viscosity values we can infer an average recurrence time of about 600 yr for normal faults and about 2000 yr for thrust faults.
    Description: Published
    Description: 815-820
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic cycle ; Seismicity and tectonics ; Transient deformation ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We have analysed the history of seismic activity in the region of L'Aquila to compare the 2009 sequence with previous ones. Historical catalogues are exhaustive for large shocks, but not for small earthquakes and swarms. Our original compilation highlights repeated seismic sequences from 1315 ad to present. In the 20th century, at least 23 sequences affected the Abruzzi region, 8 of which were very close to L'Aquila. In previous centuries, we found evidence of at least 13 sequences around L'Aquila, with maximum magnitude ∼4 to ∼5. Only three sequences were followed by stronger shocks (1461, 1703 and 2009). However, many strong events of the region (1349, 1762, 1915, 1950) were not preceded by foreshocks. We describe here the last of these sequences (1985) showing its strong similarity with the 2009 one, except its final evolution (no large event in 1985). Our analysis suggests that seismic sequences alone cannot be considered straight forerunners of incoming strong events.
    Description: Published
    Description: 52–61
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: L’Aquila earthquake ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-03
    Description: On 2009 April 6 a Mw = 6.3 earthquake struck the Abruzzi region (Central Italy) and caused severe destruction in L’Aquila and the surrounding area. In this work we present a Finite Element analysis of the event based on a realistic complex 3-D model, accounting for topographic relief and rheological heterogeneities deduced from local tomography. Finite Element computed Green’s functions were implemented in a linear inversion of GPS coseismic displacements, to retrieve the slip distribution on the rupture plane. The inverted slip models basically agree with previous studies carried out on homogeneous domains, but reveal the presence of a single high slip patch, whereas half-space or 1-D approaches obtain a more complex slip pattern. Our results point out that the introduction of 3-D features significantly influences the obtained source model, suggesting a trade-off between domain complexities and source details.
    Description: Published
    Description: 1339–1358
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Numerical approximations and analysis ; Seismicity and tectonics ; Dynamics and mechanics of faulting ; L'Aquila earthquake ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-06-08
    Description: Although no deterministic and reliable earthquake precursor is known to date, we are steadily gaining insight into probabilistic forecasting that draws on space–time characteristics of earthquake clustering. Clustering-based models aiming to forecast earthquakes within the next 24 hours are under test in the global project ‘Collaboratory for the Study of Earthquake Predictability’ (CSEP). The 2011 March 11 magnitude 9.0 Tohoku-Oki earthquake in Japan provides a unique opportunity to test the existing 1-day CSEP models against its unprecedentedly active aftershock sequence. The original CSEP experiment performs tests after the catalogue is finalized to avoid bias due to poor data quality. However, this study differs from this tradition and uses the preliminary catalogue revised and updated by the Japan Meteorological Agency (JMA), which is often incomplete but is immediately available. This study is intended as a first step towards operability-oriented earthquake forecasting in Japan. Encouragingly, at least one model passed the test in most combinations of the target day and the testing method, although the models could not take account of the megaquake in advance and the catalogue used for forecast generation was incomplete. However, it can also be seen that all models have only limited forecasting power for the period immediately after the quake. Our conclusion does not change when the preliminary JMAcatalogue is replaced by the finalized one, implying that the models perform stably over the catalogue replacement and are applicable to operational earthquake forecasting. However, we emphasize the need of further research on model improvement to assure the reliability of forecasts for the days immediately after the main quake. Seismicity is expected to remain high in all parts of Japan over the coming years. Our results present a way to answer the urgent need to promote research on time-dependent earthquake predictability to prepare for subsequent large earthquakes in the near future in Japan.
    Description: Published
    Description: 653-658
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Time-series analysis ; Probabilistic forecasting ; Seismicity and tectonics ; Computational seismology ; Statistical seismology ; Asia ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-09
    Description: In this paper, we propose a new model of the crustal structure and seismotectonics for central Sicily (southern Italy) through the analysis of the depth distribution and kinematics of the instrumental seismicity, occurring during the period from 1983 to 2010, and its comparison with individual geological structures that may be active in the area. The analysed data set consists of 392 earthquakes with local magnitudes ranging from 1.0 to 4.7. We defined a new, detailed 1-D velocity model to relocate the earthquakes that occurred in central Sicily, and we calculated a Moho depth of 37 km and a mean VP/VS ratio of 1.73. The relocated seismic events are clustered mainly in the area north of Caltanissetta (e.g. Mainland Sicily) and in the northeastern sector (Madonie Mountains) of the study area; only minor and greatly dispersed seismicity is located in the western sector, near Belice, and along the southern coast, between Gela and Sciacca. The relocated hypocentral distribution depicts a bimodal pattern: 50 per cent of the events occur within the upper crust at depths less than ~16 km, 40 per cent of the events occur within the middle and depth crust, at depths between 16 and 32 km, and the remaining 10 per cent occur at subcrustal depths. The energy release pattern shows a similar depth distribution. On the basis of the kinematic analysis of 38 newly computed focal plane solutions, two major geographically distinct seismotectonic domains are distinguished: the Madonie Mountain domain, with prevalent extensional and extensional-oblique kinematics associated with upper crust Late Pliocene–Quaternary faulting, and the Mainland Sicily domain, with prevalent compressional and compressional-oblique kinematics associated with thrust faulting, at mid to deep crust depth, along the north-dipping Sicilian Basal Thrust (SBT). The stress inversion of the Mainland Sicily focal solutions integrated with neighbouring mechanisms available in the literature highlights a regional homogeneous compressional tensor, with a subhorizontal NNW–SSE-striking σ1 axis. In addition, on the basis of geodetic data, the Mainland Sicily domain may be attributed to the SSE-ward thrusting of the Mainland Sicily block along the SBT plane. Seismogenic shearing along the SBT at mid-crustal depths was responsible for the unexpected Belice 1968 earthquake (Mw 6.1), with evident implications in terms of hazard assessment.
    Description: Published
    Description: 1237-2252
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: restricted
    Keywords: Seismicity and tectonics ; Continental tectonics: compressional ; Dynamics: seismotectonics ; Crustal structure ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The 2009 April 6, Mw= 6.3 L’Aquila earthquake occurred within a complex system of NW–SE trending normal faults in the Abruzzi Central Apennines (Italy). We analyse the coseismic deformation as measured by 〉70 global positioning system (GPS) stations, both from continuous and survey-mode networks, providing unprecedented details for a moderate normal faulting earthquake in Italy from GPS measurements. We use rectangular, uniform-slip, dislocations embedded in an elastic, homogeneous and isotropic half-space and a constrained, non-linear optimization algorithm, to solve for the best-fitting rectangular dislocation geometry and coseismic-slip distribution. We use a bootstrap approach to investigate uncertainties in the model parameters and define confidence bounds for all the inverted parameters. The rupture occurred on a N129°E striking and 50° southwestward dipping normal fault, in agreement with geological observations of surface breaks along the Paganica fault. Our distributed slip model exhibits a zone of relatively higher slip (〉60 cm) between ∼1.5 and ∼11 km depth, along a roughly downdip, NW–SE elongated patch, confined within the fault plane inverted assuming uniform-slip. The highest slip, of the order of ∼1 m, occurred on a ∼16 km2 area located at ∼5 km depth, SE of the mainshock epicentre. The analysis of model resolution suggests that slip at depth below ∼5 km can be resolved only at a spatial scale larger than 2 km, so a finer discretization of different asperities within the main patch of coseismic-slip is not allowed by GPS data. We compute the coseismic Coulomb stress changes in the crustal volume affected by the major aftershocks, and compare the results obtained from the uniform-slip and the heterogeneous-slip models. We find that most of the large aftershocks occurred in areas of Coulomb stress increase of 0.2–13 bar and that a deepening of the slip distribution down to a depth greater than 6 km in the SE part of the fault plane, in agreement with the inverted slip model, can explain the deepest, April 7, Mw 5.3 aftershock.
    Description: Published
    Description: 473-489
    Description: 1.9. Rete GPS nazionale
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Satellite geodesy ; Space geodetic surveys ; Earthquake ground motions ; Earthquake source observations ; Earthquake interaction, forecasting, and prediction ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-11-09
    Description: The shallow subsurface structure of the 2009 April 6 Mw 6.3 L’Aquila earthquake surface rupture at Paganica has been investigated with ground penetrating radar to study how the surface rupture relates spatially to previous surface displacements during the Holocene and Pleistocene. The discontinuous surface rupture stepped between en-echelon/parallel faults within the overall fault zone that show clear Holocene/Pleistocene offsets in the top 10 m of the subsurface. Some portions of the fault zone that show clear Holocene offsets were not ruptured in 2009, having been bypassed as the rupture stepped across a relay zone onto a fault across strike. The slip vectors, defined by opening directions across surface cracks, indicate dip-slip normal movement, whose azimuth remained constant between 210◦ and 228◦ across the zone where the rupture stepped between faults. We interpret maximum vertical offsets of the base of the Holocene summed across strike to be 4.5 m, which if averaged over 15 kyr, gives a maximum throw-rate of 0.23–0.30 mm yr–1, consistent with throw-rates implied by vertical offsets of a layer whose age we assume to be ∼33 ka. This compares with published values of 0.4 mm yr–1 for a minimum slip rate implied by offsets of Middle Pleistocene tephras, and 0.24 mm yr–1 since 24.8 kyr from palaeoseismology. The Paganica Fault, although clearly an important active structure, is not slipping fast enough to accommodate all of the 3–5 mm yr–1 of extension across this sector of the Apennines; other neighbouring range-bounding active normal faults also have a role to play in the seismic hazard.
    Description: Published
    Description: 774–790
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Ground penetration radar ; Aquila earthquake ; extension ; active tectonics ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: The axial zone of the Apenninic belt in central Italy is a tectonically active region affected by post-orogenic Quaternary extension. The present-day stress field is characterized by a minimum horizontal stress (Shmin) ∼ NE–SW oriented, derived mainly from earthquake focal mechanisms and secondarily from borehole breakouts and fault data. The paper describes the computation of the Shmin orientation along two deep boreholes located in the vicinity of the area hit by the 2009 April 6, Mw 6.3 L’Aquila earthquake. The analysed wells show breakout zones at a depth range between 1.4 and 4.6 km, giving precious information on a depth interval usually not investigated by any other data. The results show an Shmin N81 ± 22◦ and N74 ± 10◦ oriented for Varoni 1 and Campotosto 1 wells, respectively. The comparison among the breakouts, the 2009 seismic sequence, the past seismicity and the Quaternary faults indicates a small rotation of Shmin orientation from ∼ NE, in the southern, to ∼ ENE in the northern sector of the study area, where the wells are located. These differences are linked both to the natural variations of data and to the orientation of the main tectonic structures varying from NW–SE in the Abruzzi region to ∼ N–S moving toward the Umbro-Marchean Apennines. The identification of constant Shmin orientations with depth derived from all the examined active stress data, confirms the breakouts as reliable stress indicators also for aseismic areas.
    Description: Published
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Seismicity and tectonics ; present-day stress ; borehole breakouts ; Italy ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...