ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (38,648)
  • Wiley  (26,887)
  • Nature Publishing Group (NPG)  (11,761)
  • 2010-2014  (37,176)
  • 1950-1954  (1,472)
  • Medicine  (38,648)
Collection
  • Articles  (38,648)
Years
Year
  • 1
    Publication Date: 2013-09-12
    Description: Bone remodeling is a natural process that enables growth and maintenance of the skeleton. It involves the deposition of mineralized matrix by osteoblasts and resorption by osteoclasts. Several cancers that metastasize to bone negatively perturb the remodeling process through a series of interactions with osteoclasts, and osteoblasts. These interactions have been described as the “vicious cycle” of cancer metastasis in bone. Due to the inaccessibility of the skeletal tissue it is difficult to study this system in vivo . In contrast, standard tissue culture lacks sufficient complexity. We have developed a specialized three-dimensional culture system that permits growth of a non-vascularized, multiple-cell-layer of mineralized osteoblastic tissue from pre-osteoblasts. In this study, the essential properties of bone remodeling were created in vitro by co-culturing the mineralized collagenous osteoblastic tissue with actively resorbing osteoclasts followed by reinfusion with proliferating pre-osteoblasts. Cell-cell and cell-matrix interactions were determined by confocal microscopy as well as by assays for cell specific cytokines and growth factors. Osteoclasts, differentiated in the presence of osteoblasts, led to degradation of the collagen-rich extracellular matrix. Further addition of metastatic breast cancer cells to the co-culture mimicked the vicious cycle; i.e. there was a further reduction in osteoblastic tissue thickness, an increase in osteoclastogenesis, chemotaxis of cancer cells to osteoclasts and formation of cancer cells into large colonies. The resulting model system permits detailed study of fundamental osteobiological and osteopathological processes in a manner that will enhance development of therapeutic interventions to skeletal diseases. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-13
    Description: Aberrant glycosylation by N -acetylgalactosaminyl transferases (GALNTs) is a well-described pathological alteration that is widespread in hereditary diseases, prominently including human cancers, familial tumoral calcinosis and hyperostosis-hyperphosphatemia. In this study, we integrated different computational tools to perform the in silico analysis of clinically significant mutations (nsSNPs/ single amino acid change) at both functional and structural levels, found in human GALNT3, GALNT8, GALNT12 and GALNT13 genes. From function and structure based insights, mutations encoding R162Q, T359K, C574G, G359D, R297W, Y396C & D313N substitutions were concordantly predicted highly deleterious for relevant GALNTs proteins. From intriguing findings, T359K- GALNT3 was simulated with high contribution for disease susceptibility (tumor calcinosis) as compared to its partner variant T272K [Ichikawa et al., 2006]. Similarly, the prediction of high damaging behavior, evolutionary conservation and structural destabilization for C574G were proposed as major contributing factors to regulate metabolic disorder underlying tumor calcinosis and hyperostosis-hyperphosphatemia syndrome. In case of R297W- GALNT12 , prediction of highly deleterious effect and disruption in ionic interactions were anticipated with reduction in enzymatic activity, associated with bilateral breast cancer and primary colorectal cancers. The second GALNT12 mutation (D303N)-known splice variant- was predicted with disease severity as a result of decrease in charge density and buried behavior neighboring the catalytic B domain. In the lack of adequate in silico data about systematic characterization of clinically significant mutations in GALNTs genes, current study can be used as a significant tool to interpret the role of GALNTs reaction chemistry in disease-association risks in body. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-13
    Description: Objective To investigate whether crosstalk between RUNX2 and miRNAs is involved in tooth eruption regulated by dental follicle cells(DFCs) and the possible molecular mechanism. Methods Blood samples and embedded dental follicles were collected from patients with cleidocranial dysplasia (CCD), and RUNX2 gene mutations were analyzed, then RUNX2 +/m DFCs were isolated and identified. The characteristics of RUNX2 +/m DFCs were analyzed. The differential expression of miRNAs was detected between the RUNX2 +/m DFCs and RUNX2 +/+ DFCs by microarray, and target genes were predicted by miRGen. miR-146a was chosen for further investigation, and its effects in DFCs were analyzed by transfecting its mimics and inhibitors, and expression of genes involved in tooth eruption were detected. Results A novel insertion mutation (c.309_310insTG) of RUNX2 gene was identified which had an effect on the characteristics of DFCs. Compared with the RUNX2 +/+ DFCs, there were 69 microRNAs more than 2-fold up-regulated and 54 microRNAs more than 2-fold down-regulated in the RUNX2 +/m DFCs. Among these, miR-146a decreased significantly in RUNX 2 +/m DFCs, and expression of RUNX2, CSF-1,EGFR and OPG was significantly altered when miR-146a was over-expressed or inhibited. Conclusion RUNX2 gene mutation contributes to the characteristic change of dental follicle cells, and the crosstalk between RUNX2 gene and miRNAs may be one of the key regulatory mechanisms of differentiation of dental follicle cells. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-13
    Description: Cancer stem cells (CSC) have a central role in driving tumor growth. Since metabolism is becoming an important diagnostic and therapeutic target, characterization of CSC line energetic properties is an emerging need. Embryonic and adult stem cells, compared to differentiated cells, exhibit a reduced mitochondrial activity and a stronger dependence on aerobic glycolysis. Here, we aimed to comparatively analyze bioenergetics features of the human osteosarcoma 3AB-OS CSC-like line, and the parental osteosarcoma MG63 cells, from which 3AB-OS cells have been previously selected. Our results suggest that 3AB-OS cells depend on glycolytic metabolism more strongly than MG63 cells. Indeed, growth in glucose shortage or in presence of galactose or pyruvate -mitochondrial specific substrates- leads to a significant reduction of their proliferation compared to MG63 cells. Accordingly, 3AB-OS cells show an increased expression of lactate dehydrogenase A (LDHA) and a larger accumulation of lactate in the culture medium. In line with these findings 3AB-OS cells as compared to MG63 cells present a reduced mitochondrial respiration, a stronger sensitivity to glucose depletion or glycolysis inhibition and a lessened sensitivity to oxidative phosphorylation inhibitors. Additionally, in contrast to MG63 cells, 3AB-OS display fragmented mitochondria, which become networked as they grow in glucose-rich medium, while almost entirely loose these structures growing in low glucose. Overall, our findings suggest that 3AB-OS CSCs energy metabolism is more similar to normal stem cells and to cancer cells characterized by a glycolytic anaerobic metabolism. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-13
    Description: Areca chewing is an important environmental risk factor for development of oral premalignant lesions and cancer. Epidemiological evidence indicates that areca chewing is tightly linked to oral carcinogenesis. However, the pathogenetic impacts of areca nut extract (ANE) on normal human oral keratinocytes (HOKs) are unclear and possibly involve oxidative stress via redox imbalance. Sirtuin 3 (SIRT3) is a member of the sirtuin family of proteins that play an important role in regulating cellular reactive oxygen species (ROS) production. Recent studies have confirmed that ANE and other areca ingredients can induce ROS. In this study, we examined the role of SIRT3 in the regulation of ANE-induced ROS in HOK cells. We examined HOK cell viability following treatment with various ANE concentrations. ANE-induced cytotoxicity increased in a dose-dependent manner and was approximately 48% at a concentration of 50 μg/ml after 24 h. SIRT3 expression and enzyme activity were up-regulated in HOK cells by ANE-induced oxidative stress. Additionally, we identified that SIRT3 controls the enzymatic activity of mitochondrial proteins, such as forkhead box O3a (Foxo3a) transcription factor and antioxidant-encoding gene superoxide dismutase 2 (SOD2), by deacetylation in HOK cells. Moreover, SIRT3-mediated deacetylation and activation of Foxo3a promotes nuclear localization in vivo . These findings suggest that SIRT3 is an endogenous negative regulator in response to ANE-induced oxidative stress and demonstrate an essential role for redox balance in HOK cells. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-13
    Description: Collagen is the most abundant structural protein in mammals and is expressed in various tissues. In recent years, sphingosine 1-phosphate receptors (S1PRs) have been proven to play an important role in the regulation of collagen expression. Our previous studies reported that S1PRs are involved in TGF-β1-induced collagen expression via up-regulating S1PR1/3 in mouse bone marrow-derived mesenchymal stem cells (BMSCs), and result in experimental mouse liver fibrogenesis. But it remains unclear whether this process happens in human bone marrow-derived mesenchymal stem cells (hMSCs). In this study, we provide evidences that S1PR1/3, but not S1PR2, negatively regulate the expression of collagen in hMSCs using cellular and molecular approaches in vitro . We find that treatment of hMSCs with TGF-β1 up-regulated collagen expression in a dose- and time-dependent manner. Meanwhile, TGF-β1 inhibited the expression of S1PR1/3, but not S1PR2, in hMSCs in a time-dependent manner. Furthermore, either selective knock-down of S1PR1 or silencing S1PR3 induced collagen α1(I) and collagen α1(III) expression in hMSCs. In contrast, inhibition of S1PR2 by siRNA had no effects on the expression of collagen. Altogether, all these findings demonstrated that collagen expression was negatively regulated by S1PR1 and S1PR3 in hMSCs. This study highlights the differences between hMSCs and mouse BMSCs, provides a new regulation mechanism for collagen expression, and points out the risk of utilizing hMSCs in clinical applications. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Wiley
    In: BioEssays
    Publication Date: 2013-09-15
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Wiley
    In: BioEssays
    Publication Date: 2013-09-15
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-17
    Description: Cervical carcinoma represents the paradigm of virus-induced cancers, where virtually all cervical cancers come from previous “high-risk” HPV infection. The persistent expression of the HPV viral oncoproteins E6 and E7 is responsible for the reprogramming of fundamental cellular functions in the host cell, thus generating a noticeable, yet only partially explored, imbalance in protein molecular networks and cell signaling pathways. Eighty-eight cellular factors, identified as HPV direct or surrogate targets, were chosen and monitored in a retrospective analysis for their mRNA expression in HPV-induced cervical lesions, from dysplasia to cancer. Real-time quantitative PCR (qPCR) was performed by using formalin-fixed, paraffin embedded archival samples. Gene expression analysis identified 40 genes significantly modulated in LSIL, HSIL and squamous cervical carcinoma. Interestingly, among these, the expression level of a panel of four genes, TOP2A, CTNNB1, PFKM and GSN, was able to distinguish between normal tissues and cervical carcinomas. Immunohistochemistry was also done to assess protein expression of two genes among those up-regulated during the transition between dysplasia and carcinoma, namely E2F1 and CDC25A, and their correlation with clinical parameters. Besides the possibility of significantly enhancing the use of some of these factors in diagnostic or prognostic procedures, these data clearly outline specific pathways, and thus key biological processes, altered in cervical dysplasia and carcinoma. Deeper insight on how these molecular mechanisms work may help widen the spectrum of novel innovative approaches to these virus-induced cell pathologies. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-17
    Description: Cellular pathways are numerous and are highly integrated in function in the control of cellular systems. They collectively regulate cell division, proliferation, survival and apoptosis of cells and mutagenesis of key genes that control these pathways can initiate neoplastic transformations. Understanding these pathways is crucial to future therapeutic and preventive strategies of the disease. Ovarian cancers are of three major types; epithelial, germ-cell and stromal. However, ovarian cancers of epithelial origin, arising from the mesothelium, are the predominant form. Of the subtypes of ovarian cancer, the high-grade serous tumors are fatal, with low survival rate due to late detection and poor response to treatments. Close examination of preserved ovarian tissues and in vitro studies have provided insights into the mechanistic changes occurring in cells mediated by a few key genes. This review will focus on pathways and key genes of the pathways that are mutated or have aberrant functions in the pathology of ovarian cancer. Non-genetic mechanisms that are gaining prominence in the pathology of ovarian cancer, miRNAs and epigenetics, will also be discussed in the review. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-09-17
    Description: Normal pregnancy is associated with systemic vasodilation and decreased vascular contraction, partly due to increased release of endothelium-derived vasodilator substances. Endothelin-1 (ET-1) is an endothelium-derived vasoconstrictor acting via endothelin receptor type A (ET A R) and possibly type B (ET B R) in vascular smooth muscle cells (VSMCs), with additional vasodilator effects via endothelial ET B R. However, the role of ET-1 receptor subtypes in the regulation of vascular function during pregnancy is unclear. We investigated whether the decreased vascular contraction during pregnancy reflects changes in the expression/activity of ET A R and ET B R. Contraction was measured in single aortic VSMCs isolated from virgin, mid-pregnant (mid-Preg, day 12) and late-Preg (day 19) Sprague-Dawley rats, and the mRNA expression, protein amount, tissue and cellular distribution of ET A R and ET B R were examined using RT-PCR, Western blots, immunohistochemistry and immunofluorescence. Phenylephrine (Phe, 10 −5  M), KCl (51 mM) and ET-1 (10 −6  M) caused VSMC contraction that was in late-Preg 〈 mid-Preg and virgin rats. In VSMCs treated with ET B R antagonist BQ788, ET-1 caused significant contraction that was still in late-Preg 〈 mid-Preg and virgin rats. In VSMCs treated with the ET A R antagonist BQ123, ET-1 caused a small contraction; and the ET B R agonists IRL-1620 and sarafotoxin 6c (S6c) caused similar contraction that was in late-Preg 〈 mid-Preg and virgin rats. RT-PCR revealed similar ET A R, but greater ET B R mRNA expression in pregnant vs. virgin rats. Western blots revealed similar ET A R, and greater protein amount of ET B R in endothelium-intact vessels, but reduced ET B R in endothelium-denuded vessels of pregnant vs. virgin rats. Immunohistochemistry revealed prominent ET B R staining in the intima, but reduced ET A R and ET B R in the aortic media of pregnant rats. Immunofluorescence signal for ET A R and ET B R was less in VSMCs of pregnant vs. virgin rats. The pregnancy-associated decrease in ET A R- and ET B R-mediated VSMC contraction appears to involve downregulation of ET A R and ET B R expression/activity in VSM, and may play a role in the adaptive vasodilation during pregnancy. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-09-17
    Description: Neuroregenerative medicine is an ever-growing field in which regeneration of lost cells/tissues due to a neurodegenerative disease is the ultimate goal. With the scarcity of available replacement alternatives, stem cells provide an attractive source for regenerating neural tissue. While many stem cell sources exist, including: mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs), the limited cellular potency, technical difficulties, and ethical considerations associated with these make finding alternate sources a desirable goal. Periodontal ligament stem cells (PDLSCs) derived from the neural crest were induced into neural-like cells using a combination of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). Morphological changes were evident in our treated group, seen under both light microscopy and scanning electron microscopy (SEM). A statistically significant increase in the expression of neuron-specific β-tubulin III and the neural stem/progenitor cell marker nestin, along with positive immunohistochemical staining for glial fibrillary acidic protein (GFAP), demonstrated the success of our treatment in inducing both neuronal and glial phenotypes. Positive staining for synaptophysin demonstrated neural connections and electrophysiological recordings indicated that when subjected to whole cell patch clamping, our treated cells displayed inward currents conducted through voltage-gated sodium (Na + ) channels. Taken together, our results indicate the success of our treatment in inducing PDLSCs to neural-like cells. The ease of sourcing and expansion, their embryologic neural crest origin, and the lack of ethical implications in their use make PDLSCs an attractive source for use in neuroregenerative medicine. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-09-17
    Description: Urotensin II (UII), a vasoactive peptide modulates renal hemodynamics. However, the physiological functions of UII in glomerular cells are unclear. In particular, whether UII alters mesangial tone remains largely unknown. The present study investigates the physiological effects of UII on intracellular Ca 2+ ([Ca 2+ ] i ) and contraction in glomerular mesangial cells (GMCs). This study also tested the hypothesis that the regulator of G-protein signaling (RGS) controls UII receptor (UTR) activity in GMCs. RT-PCR, Western immunoblotting, and immunofluorescence revealed UTR expression and localization in cultured murine GMCs. Mouse UII (mUII) stimulated [Ca 2+ ] i elevation in GMCs in the absence and presence of extracellular Ca 2+ . mUII also caused a reduction in planar GMC surface area. mUII-induced [Ca 2+ ] i elevation and contraction in GMCs were attenuated by SB 657510, a UTR antagonist, araguspongin B, an inositol 1,4,5-trisphosphate receptor antagonist, thapsigargin, a sarco/endoplasmic reticulum Ca 2+ -ATPase inhibitor, and La 3+ , a store-operated Ca 2+ channel blocker, but not nimodipine, an L-type Ca 2+ channel blocker. In situ proximity ligation assay indicated molecular proximity between endogenous RGS2 and UTR in the cells. Treatment of GMCs with mUII increased plasma membrane association of RGS2 by ∼ 2-fold. mUII also increased the interaction between RGS2 and UTR in the cells. siRNA-mediated knockdown of RGS2 in murine GMCs increased mUII-induced [Ca 2+ ] i elevation and contraction by ∼ 35 and 31%, respectively. These findings indicate that mUII induces [Ca 2+ ] i elevation and contraction in murine GMCs. Data also suggest that UTR activation stimulates RGS2 recruitment to GMC plasma membrane as a negative feedback mechanism to regulate UTR signaling. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-09-17
    Description: Poly-N-acetyllactosamine (PLN) is a unique glycan composed of repeating units of the common disaccharide (Galβ1,4-GlcNAcβ1,3) n . The expression of PLN on glycoprotein core structures minimally requires enzyme activities for β1,4-galactosyltransferase (β4GalT) and β1,3-N-acetylglucosminyltransferase (β3GnT). Because β4GalTs are ubiquitous in most cells, PLN expression is generally ascribed to the tissue-specific transcription of 8 known β3GnT genes in mice. In the olfactory epithelium (OE), β3GnT2 regulates expression of extended PLN chains that are essential for axon guidance and neuronal survival. N-glycan branching and core composition, however, can also modulate the extent of PLN modification. Here we show for the first time that the β1,6-branching glycosyltransferase GCNT2 (formerly known as IGnT) is expressed at high levels specifically in the OE and other sensory ganglia. Postnatally, GCNT2 is maintained in mature olfactory neurons that coexpress β3GnT2 and PLN. This highly specific coexpression suggests that GCNT2 and β3GnT2 function cooperatively in PLN synthesis. In support of this, β3GnT2 and GCNT2 cotransfection in HEK293T cells results in high levels of PLN expression on the cell surface and on adenylyl cyclase 3, a major carrier of PLN glycans in the OE. These data clearly suggest that GCNT2 functions in vivo together with β3GnT2 to determine PLN levels in olfactory neurons by regulating β1,6-branches that promote PLN extension. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-09-18
    Description: Objective The aim of this study was to evaluate the effect of artemisinin on the proliferation and apoptosis of rat vascular smooth muscle cells (VSMCs). Method Primary rat VSMCs were treated with various doses of artemisinin. Cell proliferation was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the messenger RNA and protein expressions of proliferating cell nuclear antigen were determined by reverse-transcription polymerase chain reaction and immunohistochemistry. Apoptosis was measured using annexin V and propidium iodide double staining evaluated by flow cytometry. Protein expression of Bax, Bcl2, and cyclin-dependent kinase 4 was determined by Western blot. Results After 72 h of treatment, artemisinin significantly inhibited VSMC proliferation in a dose-dependent manner. Treatment with 1 mM artemisinin for 72 h significantly reduced the expression of proliferating cell nuclear antigen messenger RNA. On the other hand, the same treatment increased the apoptosis of VSMCs, the activation of caspase-3, the Bax protein expression, and the Bax/Bcl2 ratio. Conclusion The results suggest that artemisinin can effectively inhibit VSMC proliferation and induce VSMC apoptosis. Copyright © 2013 John Wiley & Sons, Ltd.
    Print ISSN: 0263-6484
    Electronic ISSN: 1099-0844
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-09-21
    Description: Previous studies indicate that muscle Pgc-1α expression governs the proportion of muscle fibre types. As a first step in using diet to manipulate the proportion of muscle fibre types by using Pgc-1α expression, the present study investigates the modulation of Pgc-1α expression by feedstuffs. A luciferase-based Pgc-1α reporter construct (Pgc-1α(-2553)-luc) that contains the mouse Pgc-1α promoter (−2553 to +78 bp) was prepared. A screen of ethanol extracts from 33 feedstuffs indicated that oolong tea and roasted green tea extracts decreased Pgc-1α(-2553)-luc expression in C2C12 myoblasts. The transcriptional repression of Pgc-1α by tea leaf extracts was reproduced in hepatic HepG2 cells. We further examined the effects of the alcohol extracts of tea waste and its silage on Pgc-1α transcription; the tea waste silage extract inhibited Pgc-1α transcription. Treatment with the extracts of raw tea leaves, tea waste and tea waste silage effectively decreased Pgc-1α mRNA levels during myogenesis of myosatellite cells. The present results suggest that tea leaves and their by-products could be used to modulate proportions of muscle fibre types. Copyright © 2013 John Wiley & Sons, Ltd.
    Print ISSN: 0263-6484
    Electronic ISSN: 1099-0844
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-09-22
    Description: Lymph nodes are often the first target of metastatic cancer which can then remetastasize to distant organs. The progression of lymph node metastasis is dependent on sufficient blood supply provided by angiogenesis. In the present study, we have developed a color-coded imaging model to visualize angiogenesis of lymph nodes metastasis using green fluorescent protein (GFP) and red fluorescent protein (RFP). Transgenic mice carrying GFP under the control of the nestin second-intron enhancer (ND-GFP mice) were used as hosts. Nascent blood vessels express GFP in these mice. B16F10-RFP melanoma cells were injected into the efferent lymph vessel of the inguinal lymph node of the ND-GFP nude mice, whereby the melanoma cells trafficked to the axillary lymph node. Three days after melanoma implantation, ND-GFP-expressing nascent blood vessels were imaged in the axillary lymph nodes. Seven days after implantation, ND-GFP-expressing nascent blood vessels formed a network in the lymph nodes. ND-GFP-positive blood vessels surrounded the tumor mass by 14 days after implantation. However, by 28 days after implantation, ND-GFP expression was diminished as the blood vessels matured. Treatment with doxorubicin significantly decreased the mean nascent blood vessel length per tumor volume. These results show that the dual-color ND-GFP blood vessels/RFP-tumor model is a powerful tool to visualize and quantitate angiogenesis of metastatic lymph nodes as well as for evaluation of its inhibition. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-09-22
    Description: Spermatogenesis is a special process by which spermatogonial stem cells (SSCs) divide and differentiate to male gametes called mature spermatozoa. SSCs are the unique cells because they are adult stem cells that transmit genetic information to subsequent generations. Accumulating evidence has demonstrated that SSCs can be reprogrammed to acquire pluripotency to become embryonic stem-like cells that differentiate into all cell lineages of the three germ layers, highlighting potential important applications of SSCs for regenerative medicine. Recent studies from peers and us have made great achievements on the characterization, isolation and culture of mouse and human SSCs, which could lead to better understanding the biology of SSCs and the applications of SSCs in both reproductive and regenerative medicine. In this review, we first compared the cell identity and biochemical phenotypes between mouse SSCs and human SSCs. Notably, the cell types of mouse and human SSCs are distinct, and human SSCs share some but not all phenotypes with mouse SSCs. The approaches for isolating SSCs as well as short- and long- term culture of mouse SSCs and short-period culture of human SSCs were also discussed. We further addressed the new advances on the self-renewal of SSCs with an aim to establish the long-term culture of human SSCs which has not yet been achieved. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-09-26
    Description: Long non-coding RNAs (lncRNAs) have recently gained increasing attention because of their crucial roles in gene regulatory processes. Functional studies using mammalian skin as a model system have revealed their role in controlling normal tissue homeostasis as well as the transition to a diseased state. Here, we describe how lncRNAs regulate differentiation to preserve an undifferentiated epidermal progenitor compartment, and to maintain a functional skin permeability barrier. Furthermore, we will reflect on recent work analyzing the impact of lncRNAs on the progression from normal epithelium to the development of skin disorders and cancer. Long non-coding RNAs (lncRNAs) have recently been shown to control a wide variety of gene regulatory processes. In mammalian skin, lncRNAs appear to regulate the intricate balance between progenitor cells undergoing continual regeneration in the basal layer and highly differentiated cells forming the epidermal permeability barrier.
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-10-04
    Description: Angiogenin (ANG) undergoes nuclear translocation and promotes ribosomal RNA (rRNA) transcription thereby enhancing cell growth and proliferation. However, the mode of action of ANG in stimulating rRNA transcription is unclear. Here, we show that ANG enhances the formation of RNA polymerase I (Pol I) pre-initiation complex at the ribosomal DNA (rDNA) promoter. ANG binds at the upstream control element (UCE) of the promoter and enhances promoter occupancy of RNA Pol I as well as the selectivity factor SL1 components TAF I 48 and TAF I 110. We also show that ANG increases the number of actively transcribing rDNA by epigenetic activation through promoter methylation and histone modification. ANG binds to histone H3, inhibits H3K9 methylation, and activates H3K4 methylation as well as H4 acetylation at the rDNA promoter. These data suggest that one of the mechanisms by which ANG stimulates rRNA transcription is through an epigenetic activation of rDNA promoter. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2013-10-04
    Description: No abstract is available for this article.
    Print ISSN: 0263-6484
    Electronic ISSN: 1099-0844
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-10-04
    Description: Pancreatic cancer (PC) has a high rate of mortality and a poorly understood mechanism of progression. Investigation of the molecular mechanism of PC and exploration of the specific markers for early diagnosis and specific targets of therapy are key points to prevent and treat PC effectively and to improve their prognosis. In our study, expression profiles experiment of para-carcinoma, carcinoma and relapse human PC was performed using Agilent human whole genomic oligonucleotide microarrays with 45 000 probes. Differentially expressed genes related with PC were screened and analysed further by Gene Ontology term analysis and Kyoto encyclopaedia of genes and genomes pathway analysis. Our results showed that there were 3853 differentially expressed genes associated with pancreatic carcinogenesis and relapse. In addition, our study found that PC was related to the Jak–STAT signalling pathway, PPAR signalling pathway and Calcium signalling pathway, indicating their potential roles in pancreatic carcinogenesis and progress. Copyright © 2013 John Wiley & Sons, Ltd.
    Print ISSN: 0263-6484
    Electronic ISSN: 1099-0844
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-10-04
    Description: ABSTRACT Uchl1 encodes the protein gene product 9.5 antigen (PGP9.5) that is a widely used to identify migrating neural progenitors in the PNS, mature neurons of the central and peripheral nervous systems, as well as neuroendocrine cells. To facilitate analysis of developing peripheral neurons, we linked regulatory regions of Uchl1 carried within a 160kb bacterial artificial chromosome (BAC) to the dual fluorescent reporter H2BmCherry:GFP-gpi. The Uchl1 -H2BmCherry:GFP-gpi transgene exhibits robust expression and allows clear discrimination of individual cells and cellular processes in cranial ganglia, sympathetic chain, the enteric nervous system (ENS), and autonomic ganglia of the urogenital system. The transgene also labels subsets of cell in endocrine tissues where prior in situ hybridization (ISH) studies have previously identified expression of this deubiquinating enzyme. The Uchl1 -H2BmCherry:GFP-gpi transgene will be a powerful tool for static and live imaging as well as isolation of viable neural progenitors to investigate processes of autonomic neurogenesis. © 2013 Wiley Periodicals, Inc.
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-09-11
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-09-13
    Description: The cytoplasmic signaling protein tumor necrosis factor (TNF) receptor-associated factor 5 (TRAF5), which was identified as a signal transducer for members of the TNF receptor super-family, has been implicated in several biological functions in T/B lymphocytes and the innate immune response against viral infection. However, the role of TRAF5 in cardiac hypertrophy has not been reported. In the present study, we investigated the effect of TRAF5 on the development of pathological cardiac hypertrophy induced by transthoracic aorta constriction (TAC) and further explored the underlying molecular mechanisms. Cardiac hypertrophy and function were evaluated with echocardiography, hemodynamic measurements, pathological and molecular analyses. For the first time, we found that TRAF5 deficiency substantially aggravated cardiac hypertrophy, cardiac dysfunction and fibrosis in response to pressure overload after 4 weeks of TAC compared to wild-type (WT) mice. Moreover, the mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-extracellular signal-regulated kinases 1/2 (ERK1/2) signaling pathway was more activated in TRAF5-deficient mice than WT mice. In conclusion, our results suggest that as an intrinsic cardioprotective factor, TRAF5 plays a crucial role in the development of cardiac hypertrophy through the negative regulation of the MEK-ERK1/2 pathway. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-09-13
    Description: The SON protein is a ubiquitously expressed DNA- and RNA-binding protein primarily localized to nuclear speckles. Although several early studies implicated SON in DNA-binding, tumorigenesis and apoptosis, functional significance of this protein had not been recognized until recent studies discovered SON as a novel RNA splicing co-factor. During constitutive RNA splicing, SON ensures efficient intron removal from the transcripts containing suboptimal splice sites. Importantly, SON-mediated splicing is required for proper processing of selective transcripts related to cell cycle, microtubules/centrosomes maintenance, and genome stability. Moreover, SON regulates alternative splicing of RNAs from the genes involved in apoptosis and epigenetic modification. In addition to the role in RNA splicing, SON has an ability to suppress transcriptional activation at certain promoter/enhancer DNA sequences. Considering the multiple SON target genes which are directly involved in cell proliferation, genome stability and chromatin modifications, SON is an emerging player in gene regulation during cancer development and progression. Here, we summarize available information from several early studies on SON, and highlight recent discoveries describing molecular mechanisms of SON-mediated gene regulation. We propose that our future effort on better understanding of diverse SON functions would reveal novel targets for cancer therapy. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-09-14
    Description: In the present study, we examined the effects of methanol extracts of Picrasma quassioides (MEPQ) on apoptosis in human cervical cancer cells. The results showed that MEPQ decreased the viability and induced caspase-dependent apoptosis in HEp-2 cells. MEPQ decreased specificity protein 1 (Sp1) in HEp-2 cells, whereas Sp1 mRNA was not changed. We found that MEPQ reduced Sp1 protein through proteasome-dependent protein degradation, but not the inhibition of protein synthesis. Also, MEPQ increased the expressions of Bad and truncated Bid (t-Bid) but did not alter other Bcl-2 family members. The knock-down of Sp1 by both Sp1 interfering RNA and Mithramycin A, Sp1 specific inhibitor clearly increased Bad and t-Bid expression to decrease cell viability and induce apoptosis. In addition, MEPQ inhibited cell viability and induced apoptotic cell death through the modulation of Sp1 in KB cells. These results suggest that MEPQ may be a potential anticancer agent for human cervical cancer. Copyright © 2013 John Wiley & Sons, Ltd.
    Print ISSN: 0263-6484
    Electronic ISSN: 1099-0844
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Wiley
    In: BioEssays
    Publication Date: 2013-09-15
    Description: General mechanism for exaggerated sexuallyselected traits. Many animals wield sexually-selected exaggerated traits. ‘Classic’ examples include the peacock's train, and the antlers observed in male deer, as well as fiddler crabs with enlarged claws, and the enlarged head-horns of rhinoceros beetles ( Trypoxylus dichotomus , cover). These traits are used for mate choice, or to deter rival males, because they act as unusually reliable signals of the condition of individual males: only the best-quality animals produce full-sized signal structures. But what keeps their expression honest? How can signal traits evolve that are resistant to invasion by cheaters who fake attractive signals? The answer may lie in the ancient insulin-like signalling pathway, which is found in all animals and directly links individual condition to growth in a dose dependent manner. Warren et al. discuss recent evidence suggesting that exaggerated sexually-selected signal traits arise when specific structures become extra-sensitive to physiological signals like insulins or insulin-like growth factors (pages 889–899 ).
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Wiley
    In: BioEssays
    Publication Date: 2013-09-15
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Wiley
    In: BioEssays
    Publication Date: 2013-09-15
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-09-18
    Description: mRNA synthesis in all organisms is performed by RNA polymerases, which work as nanomachines on DNA templates. The rate at which their product is made is an important parameter in gene expression. Transcription rate encompasses two related, yet different, concepts: the nascent transcription rate, which measures the in situ mRNA production by RNA polymerase, and the rate of synthesis of mature mRNA, which measures the contribution of transcription to the mRNA concentration. Both parameters are useful for molecular biologists, but they are not interchangeable and they are expressed in different units. It is important to distinguish when and where each one should be used. We propose that for functional genomics the use of nascent transcription rates should be restricted to the evaluation of the transcriptional process itself, whereas mature mRNA synthesis rates should be employed to address the transcriptional input to mRNA concentration balance leading to variation of gene expression. Transcription rate encompasses two related, yet different, concepts: the nascent transcription rate, which measures the in situ mRNA production by RNA polymerase, and the rate of synthesis of mature mRNA, which measures the contribution of transcription to the mRNA concentration. It is important to distinguish when to use each one.
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-09-18
    Description: CALHM1 was recently demonstrated to be a voltage-gated ATP-permeable ion channel and to serve as a bona fide conduit for ATP release from sweet-, umami-, and bitter-sensing type II taste cells. Calhm1 is expressed in taste buds exclusively in type II cells and its product has structural and functional similarities with connexins and pannexins, two families of channel protein candidates for ATP release by type II cells. Calhm1 knockout in mice leads to loss of perception of sweet, umami, and bitter compounds and to impaired gustatory nerve responses to these tastants. These new studies validate the concept of ATP as the primary neurotransmitter from type II cells to gustatory neurons. Furthermore, they identify voltage-gated ATP release through CALHM1 as an essential molecular mechanism of ATP release in taste buds. We discuss these new findings, as well as unresolved issues in peripheral taste signaling that we hope will stimulate future research. Sweetness, umami, and bitterness are transmitted to the nervous system via ion channel-mediated ATP release from taste cells. A recent study demonstrated that CALHM1 is essential for taste cell ATP release and perception of sweetness, umami, and bitterness. We discuss the new findings and unresolved issues in peripheral taste signaling.
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-09-20
    Description: The precise orchestration of two opposing protein complexes – one in the cytoplasm (β-catenin destruction complex) and the other at the plasma membrane (LRP6 signaling complex) – is critical for controlling levels of the transcriptional co-factor β-catenin, and subsequent activation of the Wnt/β-catenin signal transduction pathway. The Wnt pathway component Axin acts as an essential scaffold for the assembly of both complexes. How the β-catenin destruction and LRP6 signaling complexes are modulated following Wnt stimulation remains controversial. A recent study in Science by He and coworkers reveals an underlying logic for Wnt pathway control in which Axin phosphorylation toggles a switch between the active and inactive states. This mini-review focuses on this and two other recent studies that provide insight into the initial signaling events triggered by Wnt exposure. We emphasize regulation of the β-catenin destruction and LRP6 signaling complexes and propose a framework for future work in this area. The mechanism by which the Wnt pathway stabilizes β-catenin, a key transcriptional co-factor, remains controversial. Recent studies have revealed that the phosphorylation state of an essential regulator of the pathway, Axin, controls its conformation and, consequently, its availability to scaffold two opposing Wnt pathway protein complexes that regulate β-catenin stability.
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Wiley
    In: Genesis
    Publication Date: 2013-09-20
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-09-22
    Description: Background Podocytes are a terminally differentiated and highly specialized cell type in the glomerulus that forms a crucial component of the glomerular filtration barrier. Recently, Myo1e was identified in the podocytes of glomeruli. Myo1e podocyte-specific knockout mice exhibit proteinuria, podocyte foot process effacement, glomerular basement membrane disorganization, signs of chronic renal injury, and kidney inflammation. Materials and Methods After overexpression of Myo1e in a conditionally immortalized mouse podocyte cell line (MPC5), podocyte migration was evaluated via transwell assay, endocytosis was evaluated using FITC-transferrin, and adhesion was evaluated using a detachment assay after puromycin aminonucleoside treatment. Results Myo1e overexpression significantly increased the adherence of podocytes. ANOVA analysis indicated significant differences for cell adhesion between the overexpression and control groups (overexpression vs. control, t = 11.3199, P = 0.005; overexpression vs. negative control, t = 12.0570, P = 0.0006). Overexpression of Myo1e inhibited puromycin aminonucleoside-induced podocyte detachment, and the number of cells remaining on the bottom of the culture plate increased. Cell migration was enhanced in Myo1e-overexpressing podocytes in the transwell migration assay. Internalization of FITC-transferrin also increased in Myo1e-overexpressing podocytes relative to control cells. Conclusions Overexpression of Myo1e can enhance podocyte migration ability, endocytosis, and attachment to the glomerular basement membrane. Restoration of Myo1e expression in podocytes may therefore strengthen their functional integrity against environmental and mechanical injury. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-10-01
    Description: Indoleamine 2,3-dioxygenase-1 (IDO1) catabolizes the essential amino acid tryptophan, acting as a modifier of inflammation and immune tolerance. Recent work has implicated IDO1 in many human diseases, including in cancer, chronic infection, autoimmune disorders and neurodegenerative disease, stimulating a major surge in preclinical and clinical studies of its pathogenic functions. In the mouse, IDO1 is expressed widely but in situ detection of the enzyme in murine tissues has been unreliable due to the lack of specific antibodies that do not also react with tissues from animals that are genetically deficient in IDO1. Such probes are crucial to establish cellular mechanisms since IDO1 appears to act in different cell types depending on disease context, but reliable probes have been elusive in the field. In this report, we address this issue with the development of IDO1 monoclonal antibody 4B7 which specifically recognizes the murine enzyme in tissue sections, offering a reliable tool for immunohistology in preclinical disease models. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-10-01
    Description: There is a rapidly growing body of literature on the effects of topography and critically, nanotopography on cell adhesion, apoptosis and differentiation. Understanding the effects of nanotopography on cell adhesion and morphology and the consequences of cell shape changes in the nucleus, and consequently, gene expression offers new approaches to the elucidation and potential control of stem cell differentiation. In the current study we have used molecular approaches in combination with immunohistology and transcript analysis to understand the role of nanotopography on mesenchymal stem cell morphology and phenotype. Results demonstrate large changes in cell adhesion, nucleus and lamin morphologies in response to the different nanotopographies. Furthermore, these changes relate to alterations in packing of chromosome territories within the interphase nucleus. This, in turn, leads to changes in transcription factor activity and functional (phenotypical) signalling including cell metabolism. Nanotopography provides a useful, non-invasive tool for studying cellular mechanotransduction, gene and protein expression patterns, through effects on cell morphology. The different nanotopographies examined, result in different morphological changes in the cyto- and nucleo-skeleton. We propose that both indirect (biochemical) and direct (mechanical) signalling are important in these early stages of regulating stem cell fate as a consequence of altered metabolic changes and altered phenotype. The current studies provide new insight on cell–surface interactions and enhance our understanding of the modulation of stem cell differentiation with significant potential application in regenerative medicine. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-10-01
    Description: Trypanosoma cruzi is the etiological agent of Chagas disease. The parasite has to overcome oxidative damage by ROS/RNS all along its life cycle to survive and to establish a chronic infection. We propose that T. cruzi is able to survive, among other mechanisms of detoxification, by repair of its damaged DNA through activation of the DNA base excision repair (BER) pathway. BER is highly conserved in eukaryotes with apurinic/apirimidinic endonucleases (APEs) playing a fundamental role. Previous results showed that T. cruzi exposed to hydrogen peroxide and peroxinitrite significantly decreases its viability when co-incubated with methoxyamine, an AP endonuclease inhibitor. In this work the localization, expression and functionality of two T. cruzi APEs (TcAP1, Homo sapiens APE1 orthologous and TcAP2, orthologous to Homo sapiens APE2 and to Schizosaccaromyces pombe Apn2p) were determined. These enzymes are present and active in the two replicative parasite forms (epimastigotes and amastigotes) as well as in the non-replicative, infective trypomastigotes. TcAP1 and TcAP2 are located in the nucleus of epimastigotes and their expression is constitutive. Epimastigote AP endonucleases as well as recombinant TcAP1 and TcAP2 are inhibited by methoxyamine. Overexpression of TcAP1 increases epimastigotes viability when they are exposed to acute ROS/RNS attack. This protective effect is more evident when parasites are submitted to persistent ROS/RNS exposition, mimicking nature conditions. Our results confirm that the BER pathway is involved in T. cruzi resistance to DNA oxidative damage and points to the participation of DNA AP endonucleases in parasite survival. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-10-01
    Description: Constitutive androstane receptor (CAR) was originally identified as xenobiotic sensor that regulates the expression of cytochrome P450 genes. However, recent studies suggest that this nuclear receptor is also involved in the regulation of energy metabolism including glucose and lipid homeostasis. This study investigated the role of CAR in the regulation of bone mass in vivo using CAR -/- mice. Endogenous mRNA expression of CAR was observed in both primary osteoblasts and osteoclast precursors. CAR -/- mice have exhibited significant increase in whole body bone mineral density (BMD) by 9.5% ( p  〈 0.01) and 5.5% (p 〈 0.05) at 10 and 15 weeks of age, respectively, compared with WT mice in males. Microcomputed tomography analysis of proximal tibia demonstrated a significant increase in trabecular bone volume (62.7%), trabecular number (54.1%) in male CAR -/- mice compared with WT mice. However, primary culture of calvarial cells exhibited no significant changes in osteogenic differentiation potential between CAR -/- and WT. In addition, the number of tartrate-resistant acid-phosphatase positive osteoclasts in the femur and serum level of CTx was not different between CAR -/- and WT mice. The higher BMD and microstructural parameters were not observed in female mice. Interestingly, serum level of testosterone in male CAR -/- mice was 2.5-fold higher compared with WT mice and the mRNA expressions of Cyp2b9 and 2b10 in the liver, which regulate testosterone metabolism, were significantly down-regulated in male CAR -/- mice. Furthermore, the difference in BMD between CAR -/- and WT mice disappeared at 8 weeks after performing orchiectomy. CAR -/- mice also exhibited significant increase in serum1,25(OH) 2 D 3 levels but Cyp 27B1 which converts 25(OH)D 3 to 1,25(OH) 2 D 3 was significantly down-regulated compared to WT mice. These results suggest that in vivo deletion of CAR resulted in higher bone mass, which appears to be a result from reduced metabolism of testosterone due to down-regulation of Cyp2b. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-10-04
    Description: Active glutamine utilization is critical for tumor cell proliferation. Glutaminolysis represents the first and rate-limiting step of glutamine utilization and is catalyzed by glutaminase (GLS). Activation of ErbB2 is one of the major causes of breast cancers, the second most common cause of death for women in many countries. However, it remains unclear whether ErbB2 signaling affects glutaminase expression in breast cancer cells. In this study, we show that MCF10A-NeuT cell line has higher GLS1 expression at both mRNA and protein levels than its parental line MCF10A, and knockdown of ErbB2 decreases GLS1 expression in MCF10A-NeuT cells. We further show that in these cells, ErbB2-mediated upregulation of GLS1 is not correlated to c-Myc expression. Moreover, activation of neither PI3K-Akt nor MAPK pathway is sufficient to upregulate GLS1 expression. Interestingly, inhibition of NF-κB blocks ErbB2-stimulated GLS1 expression, whereas stimulation of NF-κB is sufficient to enhance GLS1 levels in MCF10A cells, suggesting a PI3K-Akt-independent activation of NF-κB upregulates GLS1 in ErbB2-positive breast cancer cells. Finally, knockdown or inhibition of GLS1 significantly decreased cell proliferation of breast cancer cells with high GLS1 levels. Taken together, our data indicate that ErbB2 activation promotes GLS1 expression via a PI3K-Akt-independent NF-κB pathway in breast cancer cells, identifying another oncogenic signaling pathway which stimulates GLS1 expression, and thus promoting glutamine utilization in cancer cells. These findings, if validated by in vivo model, may facilitate the identification of novel biochemical targets for cancer prevention and therapy. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-10-04
    Description: Tissue injury and inflammation are associated with increased production of reactive oxygen species (ROS), which have the ability to induce oxidative injury to various biomolecules resulting in e.g. protein dysfunction or cell death. However, recent observations indicate that formation of hydrogen peroxide (H 2 O 2 ) during tissue injury is also an essential feature of the ensuing wound healing response, and functions as an early damage signal to control several critical aspects of the wound healing process. Because innate oxidative wound responses must be tightly coordinated to avoid chronic inflammation or tissue injury, a more complete understanding is needed regarding the origins and dynamics of ROS production, and their critical biological targets. This Prospect highlights the current experimental evidence implicating H 2 O 2 in early epithelial wound responses, and summarizes technical advances and approaches that may help distinguish its beneficial actions from its more deleterious actions in conditions of chronic tissue injury or inflammation. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-06-06
    Description: Epidemiological studies have demonstrated that stress-related disorders, such as the increase on the caloric intake, are twice as common in women as in men, but surprisingly, very few studies have been tested this subject on female experimental animals. Additionally, it has been proposed that regular physical exercise can improve the deleterious effects of stress. Therefore, the present longitudinal study, performed in female rats, aimed to test the influence of chronic stress (ST) imposed by social isolation on the animals’ caloric intake and to assess the effect of regular physical exercise of low intensity on this behaviour. In 4 groups of Wistars rats (control sedentary, n  = 6; control exercised, n  = 6; ST sedentary, n  = 6; ST exercised, n  = 6), body weight, food intake, abdominal fat weight, adrenal weight, corticosterone metabolites in faeces and plasma insulin levels were measured during the experimental protocol and/or at its end. The results showed that social isolation was not able to modify the amount of abdominal fat and the body weight; however, it promoted significant increases in the corticosterone metabolites and in the amount of caloric intake, which were attenuated in exercised rats. Additionally, exercised groups presented lower levels of fasting insulin than sedentary groups. Therefore, the present study demonstrated that regular physical exercise of low intensity attenuates the corticosterone metabolites and overeating behaviour triggered by social stress. Copyright © 2013 John Wiley & Sons, Ltd.
    Print ISSN: 0263-6484
    Electronic ISSN: 1099-0844
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-06-07
    Description: Hepatocytes can be generated from embryonic stem cells (ESCs) using inducers such as chemical compounds and cytokines, but issues related to low differentiation efficiencies remain to be resolved. Recent work has shown that overexpression of lineage-specific transcription factors can directly cause cells phenotypic changes, including differentiation, trans-differentiation, and de-differentiation. We hypothesized that lentivirus-mediated constitutive expression of forkhead box A2 (Foxa2) and hepatocyte nuclear factor 4 alpha (Hnf4a) could promote inducing mouse ESCs to hepatocyte-likes cells. First, ESC lines that stably expressed Foxa2, Hnf4a or Foxa2/Hnf4a were constructed via lentiviral expression vectors. Second, observations of cell morphology changes were made during the cell culture process, followed by experiments examining teratoma formation. Then, the effects of constitutive expression of Foxa2 and Hnf4a on hepatic differentiation and maturation were determined by measuring the marker gene expression levels of Albumin, α-fetoprotein, Cytokeratin18, and α1-antitrypsin. The results indicate that constitutive expression of Foxa2 and Hnf4a does not affect ESCs culture, teratoma formation, or the expression levels of the specific hepatocyte genes under autonomous differentiation. However, with some assistance from inducing factors, Foxa2 significantly increased the hepatic differentiation of ESCs, whereas the expression of Hnf4a alone or Foxa2/Hnf4a could not. Differentiated CCE-Foxa2 cells were more superior in expressing several liver-specific markers and protein, storing glycogen than differentiated CCE cells. Therefore, our method employing the transduction of Foxa2 would be a valuable tool for the efficient generation of functional hepatocytes derived from ESCs. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-06-07
    Description: The definition of the secretome signature of a cancer cell line can be considered a potential tool to investigate tumor aggressiveness and a preclinical exploratory study required to optimize the search of cancer biomarkers. Dealing with a cell-specific secretome limits the contamination by the major components of the human serum and reduces the range of dynamic concentrations among the secreted proteins, thus favouring under-represented tissue-specific species. The aim of the present study is to characterize the secretome of two human colon carcinoma cell lines, CaCo-2 and HCT-GEO, in order to evaluate differences and similarities of two colorectal cancer model systems. In this study, we identified more than 170 protein species, 64 more expressed in the secretome of CaCo-2 cells and 54 more expressed in the secretome of HCT-GEO cells; 58 proteins were shared by the two systems. Among them, more than 50% were deemed to be secretory according to their Gene Ontology annotation and/or to their SignalP or SecretomeP scores. Such a characterization allowed to corroborate the potential of a cell culture-based model in order to describe the cell-specific invasive properties and to provide a list of putative cancer biomarkers. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-06-07
    Description: The cytoplasmic C-terminus of connexin43 (Cx43) interacts with numerous signaling complexes. We hypothesize that signal complex docking to the Cx43 C-terminus (CT) is required to propagate the molecules being shared by gap junctions. We have previously shown that Cx43 impacts the responsiveness of osteoblasts to FGF2 in a PKCδ- and ERK-dependent manner, converging on Runx2 activity. Here, we mapped the interaction domain of Cx43 and PKCδ to amino acids 243-302 of the Cx43 CT by GST pulldown assay. Using Runx2-responsive luciferase reporter assays, a Cx43 deletion construct (Cx43 S244Stop), which lacks the C-terminus (amino acids 244 to 382), failed to support the Cx43-dependent potentiation of transcription following FGF2 treatment in MC3T3 osteoblast-like cells. Similarly, overexpression of Cx43 S244Stop could not mimic the ability of the full length Cx43 to stimulate expression of osteoblast genes. In contrast to full length Cx43, overexpression of just the Cx43 CT (amino acids 236 to 382) inhibited both transcription from a Runx2 reporter and signaling via PKCδ and ERK. Inhibition of signaling by the CT did not occur in HeLa cells, which lack endogenous Cx43. In summary, the data support a model in which an intact Cx43 is required for both signal propagation/permeability (i.e., channel function) and local recruitment of signaling complexes to the CT (i.e., docking function) in order to mediate its cellular effects. Further, while the CT alone has channel independent activity, it is opposing to the effect of overexpression of the full length Cx43 channel. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-06-07
    Description: Hyperglycaemia, a characteristic feature of diabetes mellitus, induces endothelial dysfunction and vascular complications by accelerating endothelial cell (EC) senescence and limiting the proliferative potential of these cells. Here we aimed to investigate the effect of stachydrine, a proline betaine present in considerable quantities in juices from fruits of the Citrus genus, on EC under high-glucose stimulation, and its underlying mechanism. The senescence model of EC was set up by treating cells with high-glucose (30 mM) for different times. Dose-dependent (0.001-1mM) evaluation of cell viability revealed that stachydrine does not affect cell proliferation with a similar trend up to 72 h. Noticeable, stachydrine (0.1 mM) significantly attenuated the high-glucose induced EC growth arrest and senescence. Indeed, co-treatment with high-glucose and stachydrine for 48 h kept the percentage of EC in the G 0 /G 1 cell cycle phase near to control values and significantly reduced cell senescence. Western blot analysis and confocal-laser scanning microscopy revealed that stachydrine also blocked the high-glucose induced upregulation of p16 INK4A and downregulation of SIRT1 expression and enzyme activity. Taken together, results here presented are the first evidence that stachydrine, a naturally occurring compound abundant in citrus fruit juices, inhibits the deleterious effect of high-glucose on EC and acts through the modulation of SIRT1 pathway. These results may open new prospective in the identification of stachydrine as an important component of healthier eating patterns in prevention of cardiovascular diseases. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-06-07
    Description: Rett Syndrome (RTT) is one of most prevalent female neurodevelopmental disorders. De novo mutations in X-linked MECP2 are mostly responsible for RTT. Since the identification of MeCP2 as the underlying cause of RTT, murine models have contributed to understanding the pathophysiology of RTT and function of MeCP2. Reprogramming is a procedure to produce induced pluripotent stem cells (iPSCs) by overexpression of four transcription factors. iPSCs obtain similar features as embryonic stem cells and are capable of self-renewing and differentiating into cells of all three layers. iPSCs have been utilized in modeling human diseases in vitro. Neurons differentiated from RTT-iPSCs showed the recapitulation of RTT phenotypes. Despite the early success, genetic and epigenetic instability upon reprogramming and ensuing maintenance of iPSCs raise concerns in using RTT-iPSCs as an accurate in vitro model. In this review, we update the current of iPSC-based RTT modeling, and concerns and challenges. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-06-07
    Description: Background Mesangial cells (MCs) proliferation and accumulation of glomerular matrix proteins such as fibronectin (FN) are the early features of diabetic nephropathy, with MCs known to upregulate matrix protein synthesis in response to high glucose. Recently, it has been found that andrographolide has renoprotective effects on diabetic nephropathy. However, the molecular mechanism underlying these effects remains unclear. Methods Cell viability and proliferation was evaluated by MTT. FN expression was examined by immunofluorescence and immunoblotting. Activator protein-1 (AP-1) activation was assessed by immunoblotting, luciferase reporter and electrophoretic mobility shift assays. Results Andrographolide significantly decreased high glucose-induced cell proliferation and FN expression in MCs. Exposure of MCs to high glucose markedly stimulated the expression of phosphorylated c-jun, whereas the stimulation was inhibited by andrographolide. Plasmid pAP-1-Luc luciferase reporter assay showed that andrographolide blocked high glucose-induced AP-1 transcriptional activity. EMSA assay demonstrated that increased AP-1 binding to a AP-1 binding site at -1029 in the FN gene promoter upon high glucose stimulation, and the binding was disrupted by andrographolide treatment. Conclusions These data indicate that andrographolide suppresses high glucose-induced FN expression by inhibiting AP-1-mediated pathway. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-06-08
    Description: Basic fibroblast growth factor (bFGF) and Notch signaling play critical roles in various cell behaviors. Here, we investigated the influence of bFGF and Notch signaling in alkaline phosphatase (ALP) expression and mineralization process in human periodontal ligament-derived mesenchymal stem cells (PDLSCs) and stem cells isolated from human exfoliated deciduous teeth (SHEDs). PDLSCs and SHEDs were cultured in osteogenic medium supplemented with bFGF or on the immobilized Notch ligands, JAGGED1. The ALP mRNA and protein expression were measured by quantitative reverse transcriptase polymerase chain reaction and enzymatic activity assay, respectively. Mineral deposition was determined using alizarin red S staining. The results showed that the addition of bFGF resulted in the decrease of ALP mRNA expression and enzymatic activity. In addition, the attenuation of mineralization was noted. These phenomenons were blocked by the addition of a fibroblast growth factor receptor inhibitor (SU5402) or a MEK inhibitor (PD98059). Interestingly, bFGF supplementation also decreased the Notch signaling component mRNA levels. Thus, to evaluate effect of Notch signaling in mineralization process, PDLSCs and SHEDs were exposed to JAGGED1 modified surface. The ALP mRNA and protein expression were significantly upregulated and the mineral deposition was markedly increased. These results could be reversed by the addition of a γ-secretase inhibitor. In addition, bFGF could attenuate the Notch-signaling-induced mineralization in both PDLSCs and SHEDs. These results suggest that mineralization was enhanced by Notch signaling but attenuated by bFGF signaling. This knowledge can be further utilized to control PDLSCs and SHEDs mineralization for tissue regeneration purpose. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-06-12
    Description: Cell penetrating peptides (CPPs) are a series of promising carriers for delivering exogenous DNA to living cells. Among them, the combination of the human immunodeficiency virus TAT protein (TAT) with the SV40 large T protein nuclear localization signal (NLS) to form NLS-TAT performs well. In the present study, we took advantage of this new carrier to deliver transforming growth factor-beta 3 (TGFβ3) genes. TGFβ3 was expressed by the pEGFP-N1 vector following transfection of rat precartilaginous stem cells (PSCs), which promoted hTGFβ3 protein self-expression. At 24 h, 48 h, 72 h and 120 h after transfection, the expression levels of hTGFβ3 were found to be elevated as compared with the control. The expression of hTGFβ3 was found to mediate the chondrogenic effect of PSCs. Thus, we determined the expression of the chondrogenesis-related genes type II collagen, Sox 9 and aggrecan in PSCs at 24 h, 48 h, 72 h and 120 h after transfection. We found that their transcription and translation was augmented, which indicated a trend of active chondrogenesis in the PSCs. Our results demonstrated that NLS-TAT had the ability to deliver exogenous DNA into rat PSCs and could be actively expressed. This process successfully promoted PSC chondrogenesis. Additionally, PSC, may represent a new type of stem cells, and thus show great potential in regenerative repair following cartilage injury. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-06-12
    Description: Diabetes mellitus is associated with increased risk of osteopenia and bone fracture that may be related to hyperglycemia. However, the mechanisms accounting for diabetic bone disorder are unclear. Here, we showed that high glucose significantly promoted the production of reactive oxygen species (ROS) in rat primary osteoblasts. Most importantly, we reported for the first time that ROS induced by high glucose increased alkaline phosphatase (ALP) activity, inhibited type I collagen (collagen I) protein level and cell mineralization, as well as gene expression of osteogenic markers including runt-related transcription factor 2 (Runx2), collagen I, osteocalcin, but promoted lipid droplet formation and gene expression of adipogenic markers including peroxisome proliferator-activated receptor gamma (PPARγ), adipocyte fatty acid binding protein (aP2), and adipsin, which were restored by pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger. Moreover, high glucose-induced oxidative stress activated PI3K/Akt pathway to inhibited osteogenic differentiation but stimulated adipogenic differentiation. In contrast, NAC and a PI3K inhibitor, LY-294002, reversed the down-regulation of osteogenic markers and the up-regulation of adipogenic markers as well as the activation of Akt under high glucose. These results indicated that oxidative stress played a key role in high glucose-induced increase of adipogenic differentiation which contributed to the inhibition of osteogenic differentiation. This process was mediated by PI3K/Akt pathway in rat primary osteoblasts. Hence suppression of oxidative stress could be a potential therapeutic approach for diabetic osteopenia. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-06-12
    Description: Testosterone exerts important effects in the heart. Cardiomyocytes are target cells for androgens, and testosterone induces rapid effects via Ca 2+ release and protein kinase activation and long-term effects via cardiomyocyte differentiation and hypertrophy. Furthermore, it stimulates metabolic effects such as increasing glucose uptake in different tissues. Cardiomyocytes preferentially consume fatty acids for ATP production, but under particular circumstances, glucose uptake is increased to optimize energy production. We studied the effects of testosterone on glucose uptake in cardiomyocytes. We found that testosterone increased uptake of the fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)-2-deoxyglucose and [ 3 H]2-deoxyglucose, which was blocked by the glucose transporter 4 (GLUT4) inhibitor indinavir. Testosterone stimulation in the presence of cyproterone or albumin-bound testosterone induced glucose uptake, which suggests an effect that is independent of the intracellular androgen receptor. To determine the degree of GLUT4 cell surface exposure, cardiomyocytes were transfected with the plasmid GLUT4 myc -eGFP. Subsequently, testosterone increased GLUT4 myc- GFP exposure at the plasma membrane. Inhibition of Akt by the Akt-inhibitor-VIII had no effect. However, inhibition of Ca 2+ /calmodulin protein kinase (CaMKII) (KN-93 and autocamtide-2 related inhibitory peptide II) and AMP-activated protein kinase (AMPK) (compound C and siRNA for AMPK) prevented glucose uptake induced by testosterone. Moreover, GLUT4 myc- eGFP exposure at the cell surface caused by testosterone was also abolished after CaMKII and AMPK inhibition. These results suggest that testosterone increases GLUT4-dependent glucose uptake, which is mediated by CaMKII and AMPK in cultured cardiomyocytes. Glucose uptake could represent a mechanism by which testosterone increases energy production and protein synthesis in cardiomyocytes. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-06-07
    Description: Although the role of Cbl-family proteins as key cellular regulators has been established, phenomena regulated in a Cbl-dependent fashion are multiple and the mechanisms mediating the effects of Cbl proteins are diverse. This finding makes it important to consider different phenomena affected by functions of Cbl proteins individually. Among effects of Cbl on various biological functions there are many cases of regulation of cellular phenomena related to cytoskeletal rearrangements, such as cell adhesion, motility and invasion. Some of these regulatory functions are mediated by adaptor-type interactions of Cbl, especially by Cbl-dependent modulation of phosphatidyl-inositol-3' kinase (PI3K), while others are caused by Cbl-dependent ubiquitylation of various cytoskeletal and regulatory proteins, identified and unidentified. The role of Cbl in regulation of cytoskeleton-dependent cellular functions is discussed in this review. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-06-07
    Description: We have previously demonstrated that the ultraviolet (UV) light is effective against a variety of cancer cells in vivo as well as in vitro. In the present report, we imaged the DNA damage repair response of minimal cancer after UVC irradiation. DNA-damage repair response to UV irradiation was imaged on tumors growing in 3-D culture and in superficial tumors grown in vivo . UV-induced DNA damage repair was imaged with GFP fused to the DNA damage response (DDR)-related chromatin-binding protein 53BP1 in MiaPaCa-2 human pancreatic cancer cells. Three-dimensional culture and in vivo imaging enabled 53BP1-GFP nuclear foci to be observed within one hour after UVC irradiation, indicating the onset of DNA damage repair response. A clonogenic assay showed that UVC inhibited MiaPaCa-2 cell proliferation in a dose-dependent manner, while UVA and UVB showed little effect on cell proliferation. Induction of UV-induced 53BP1-GFP focus formation was limited up to a depth of 40 µm in 3D-culture of MiaPaCa-2 cells. The MiaPaCa-2 cells irradiated by UVC light in a skin-flap mouse model had a significant decrease of tumor growth compared to untreated controls. Our results also demonstrate that 53BP1-GFP is an imageable marker to UV-induced DNA damage repair response of minimal cancer and that UVC is a useful tool for the treatment of residual cancer since UVC can kill superficial cancer cells without damage to deep tissue. In this study, using 53BP1-GFP as a marker of early response to DNA damage, we investigated the efficacy and limitation of UV light as a therapeutic modality for MRC. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-06-08
    Description: Endochondral ossification is essential for new bone formation and remodeling during the distraction stage. Endochondral ossification is attributed to chondrocyte maturation, which is induced by various factors, such as the cellular environment, gene transcription, and growth factor expression. Cartilage oligomeric matrix protein (COMP)-angiopoietin 1 (Ang1) is more soluble, stable, and potent than endogenous Ang1, and COMP-Ang1 treatment has osteogenic and angiogenic effects in an in vivo model of bone fracture healing. Although the osteogenic effects of COMP-Ang1 have been demonstrated, the precise mechanism by which COMP-Ang1 induces chondrocyte maturation and triggers endochondral ossification is not understood. Here, we investigated the possible mechanism by which COMP-Ang1 induces chondrocyte maturation. First, using a WST assay, we found that COMP-Ang1 is nontoxic in rat chondrocytes. Then, we isolated total RNA from COMP-Ang1–treated rat chondrocytes, and analyzed the decrease in chondrogenic gene expression and the increase in osteogenic gene expression using real-time RT-PCR. Gene and protein expression of heme oxygenase-1 (HO-1), which maintains chondrocytes in an immature stage, decreased in a dose-dependent manner upon COMP-Ang1 treatment. To clarify the relationship between HO-1 and COMP-Ang1 in chondrocyte maturation, we used cobalt protoporphyrin IX (CoPP IX), an HO-1 inducer, and tin protoporphyrin IX (SnPP-IX), an HO-1 inhibitor. Treatment with various combinations of CoPP IX, SnPP IX, and COMP-Ang1 confirmed that COMP-Ang1 accelerates chondrocyte maturation by reducing HO-1. In conclusion, our results suggest that COMP-Ang1 accelerates chondrocyte maturation by interacting with HO-1. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-06-12
    Description: Metagenomics is a culture- and PCR-independent approach that is now widely exploited for directly studying microbial evolution, microbial ecology, and developing biotechnologies. Observations and discoveries are critically dependent on DNA extraction methods, sequencing technologies, and bioinformatics tools. The potential pitfalls need to be understood and, to some degree, mastered if the resulting data are to survive scrutiny. In particular, methodological variations appear to affect results from different ecosystems differently, thus increasing the risk of biological and ecological misinterpretation. Part of the difficulty is derived from the lack of knowledge concerning the true microbial diversity and because no approach can guarantee accessing microorganisms in the same proportion in which they exist in the environment. However, the variation between different approaches (e.g. DNA extraction techniques, sequence annotation systems) can be used to evaluate whether observations are meaningful. These methodological variations can be integrated into the error analysis before comparing microbial communities. Metagenomics is a powerful approach targeting environmental nucleic diversity but represents also a methodological jungle where pitfalls are challenging when quantitative observations are desired. Here we describe the effect of critical parameters (especially DNA extraction and annotation stringency) required to represent microbial communities function and structure in the metagenomic era.
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-06-07
    Description: One of the most frequent chromosomal translocation found in patients with acute myeloid leukemia (AML) is the t(8;21). This translocation involves the RUNX1 and ETO genes. The breakpoints regions for t(8;21) are located at intron 5 and intron 1 of the RUNX1 and ETO gene respectively. To date, no homologous sequences have been found in these regions to explain their recombination. The breakpoint regions of RUNX1 gen are characterized by the presence of DNasaI hypersensitive sites and topoisomerase II cleavage sites, but no information exists about complementary regions of ETO gene. Here we report analysis of chromatin structure of ETO breakpoint regions. Chromatin immunoprecipitation (ChIP) were performed with antibodies specific to acetylated histone H3, H4 and total histone H1. Nucleosomal distribution at the ETO locus was evaluated by determining total levels of histone H3. Our data show that in myeloid cells, the breakpoint regions at the ETO gene are enriched in hyperacetylated histone H3 compared to a control region of similar size where no translocations have been described. Moreover, acetylated H4 associates with both the whole ETO breakpoint regions as well as the control intron. Interestingly, we observed no H1 association either at the breakpoint regions or the control region of the ETO gene. Our data indicate that a common chromatin structure enriched in acetylated histones is present in breakpoint regions involved in formation of (8;21) leukemic translocation. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-06-08
    Description: PU.1 is an Ets family transcription factor involved in the myelo-lymphoid differentiation. We have previously demonstrated that PU.1 is also expressed in the adipocyte lineage. However, the expression levels of PU.1 mRNA and protein in preadipocytes do not match the levels in mature adipocytes. PU.1 mRNA level is higher in preadipocytes, whereas its protein is expressed in the adipocytes but not in the preadipocytes. The underlying mechanism remains elusive. Here, we find that miR-155 knockdown or overexpression has no effect on the levels of PU.1 mRNA and protein in preadipocytes or adipocytes. MiR-155 regulates adipogenesis not through PU.1, but via C/EBPβ which is another target of miR-155. We also checked the expression levels of PU.1 mRNA and antisense long non-coding RNA (AS lncRNA). Interestingly, compared with the level of PU.1 mRNA, the level of PU1 AS lncRNA is much higher in preadipocytes, whereas it is opposite in the adipocytes. We further discover that PU.1 AS lncRNA binds to its mRNA forming an mRNA/AS lncRNA compound. The knockdown of PU.1 AS by siRNA inhibits adipogenesis and promotes PU.1 protein expression in both preadipocytes and adipocytes. Furthermore, the repression of PU.1 AS decreases the expression and secretion of adiponectin. We also find that the effect of retroviral-mediated PU.1 AS knockdown on adipogenesis is consistent with that of PU.1 AS knockdown by siRNA. Taken together, our results suggest that PU.1 AS lncRNA promotes adipogenesis through preventing PU.1 mRNA translation via binding to PU.1 mRNA to form mRNA/AS lncRNA duplex in preadipocytes. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-06-11
    Description: Indoleamine 2,3-dioxygenase (IDO) is an interferon-γ (IFN-γ)–induced tryptophan-degrading enzyme, producing kynurenine (KYN) that participates in the mechanism of tumor immune tolerance. Thus, IDO inhibition has been considered a strategy for anticancer therapy. The aim of this study was to identify whether the metabolites originated from the competitive routes of tryptophan metabolism, such as the serotonergic or N , N -dimethyltryptamine (DMT) pathways, have inhibitory effects on recombinant human IDO (rhIDO) activity. Serotonin and melatonin had no effect; on the other hand, tryptamine (TRY) and DMT modulated the activity of rhIDO as classical non-competitive inhibitors, with Ki values of 156 and 506 μM, respectively. This inhibitory effect was also observed on constitutively expressed or IFN-γ–induced IDO in the A172 human glioma cell line. TRY and DMT increased the cytotoxic activity of peripheral blood mononuclear cells (PBMCs) in co-culture assays. We conclude that the IDO inhibition by TRY and DMT contributed to a more effective tumor-reactive response by the PBMCs. Copyright © 2013 John Wiley & Sons, Ltd.
    Print ISSN: 0263-6484
    Electronic ISSN: 1099-0844
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-06-12
    Description: Widespread changes in gene expression underlie B cell development and activation, yet our knowledge of which chromatin-remodeling factors are essential is limited. Here, we demonstrate that the BRG1 catalytic subunit of SWI/SNF complexes was dispensable for murine B cell development but played an important, albeit selective, role during activation. Although BRG1 was dispensable for CD69 induction and differentiation into plasma cells based on the ability of mutant B cells to undergo hypertrophy and secrete IgM antibodies, it was required for robust cell proliferation in response to activation. Accordingly, BRG1 was required for only ∼100 genes to be expressed at normal levels in naïve B cells but 〉1,000 genes during their activation. BRG1 upregulated 5-fold more genes than it downregulated, and the toll-like receptor pathway and JAK/STAT cytokine-signaling pathways were particularly dependent on BRG1. The importance of BRG1 in B cell activation was underscored by the occurrence of opportunistic Pasteurella infections in conditionally mutant mice. B cell activation has long served as a model of inducible gene expression, and the results presented here identify BRG1 as a chromatin-remodeling factor that upregulates the transcriptome of B cells during their activation to promote rapid cell proliferation and to mount an effective immune response. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-06-12
    Description: Pericytes, typically attached to the walls of microvessels in almost all organs, interact with endothelial cells and take part in diverse biological processes, e.g. blood vessel regulation and tissue repair. This suggests that pericytes harbor a remarkable degree of cellular plasticity, which could potentially be employed for the treatment of diseases affecting diverse tissues such as the skeletal muscle and the central nervous system. Here, we follow pericytes on their journey across Waddington's epigenetic landscape, descending from their origin, along a path guided by environmental signals or ectopic transcription factors, at the end of which they acquire a new identity, e.g. muscle or nerve cells. The central theme of this review is the question of whether pericytes can be enticed to differentiate into whatever cell type is needed, and thus provide an endogenous cellular source for treating as yet incurable diseases – like a magic bullet. Also watch the Video Abstract. http://youtu.be/J4b-cmRWLWI Recent studies show that microvessel-associated pericytes exhibit an unprecedented degree of plasticity and implicate these cells as a physiological cellular source or therapeutic target for tissue repair. They have potential for therapeutic applications in areas ranging from muscle degeneration to heart infarction and CNS injury.
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-04-03
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-04-03
    Description: The carboxyl terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase/cochaperone critical for the maintenance of cardiac function. Mice lacking CHIP (CHIP−/−) suffer decreased survival, enhanced myocardial injury and increased arrhythmias compared with wild-type controls following challenge with cardiac ischaemia reperfusion injury. Recent evidence implicates a role for CHIP in chaperone-assisted selective autophagy, a process that is associated with exercise-induced cardioprotection. To determine whether CHIP is involved in cardiac autophagy, we challenged CHIP−/− mice with voluntary exercise. CHIP−/− mice respond to exercise with an enhanced autophagic response that is associated with an exaggerated cardiac hypertrophy phenotype. No impairment of function was identified in the CHIP−/− mice by serial echocardiography over the 5 weeks of running, indicating that the cardiac hypertrophy was physiologic not pathologic in nature. It was further determined that CHIP plays a role in inhibiting Akt signalling and autophagy determined by autophagic flux in cardiomyocytes and in the intact heart. Taken together, cardiac CHIP appears to play a role in regulating autophagy during the development of cardiac hypertrophy, possibly by its role in supporting Akt signalling, induced by voluntary running in vivo . Copyright © 2013 John Wiley & Sons, Ltd.
    Print ISSN: 0263-6484
    Electronic ISSN: 1099-0844
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-03-30
    Description: ABSTRACT Obesity is now a major health problem due to its rapidly increasing incidence worldwide and severe consequences.Among many conditions associated with obesity aresome cancers including melanoma.Both genetic defects and environmental risk factors are involved in the carcinogenesis of melanoma. Activation of multiple signal pathways such as the PI3K/Akt and MAPK pathways are necessary for the initiation of melanoma. Activation of the MAPK pathway as a result of activating mutations in BRAF is commonly seen in melanoma though it alone is not sufficient to cause malignant transformation of melanocytes. Obesity can result in the activation of many signal pathways including PI3K/Akt, MAPK and STAT3. The activation of these pathways may have a synergistic effect with the genetic defects thereby increasing the incidence of melanoma. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-04-02
    Description: Optical tweezers were used to scan individual Chronic Myelogenous Leukemia cells to determine if the cell death depends on the scanning conditions. Although increasing the scanning frequency or amplitude means greater force applied to the cells, their effects on cell death are not a simple increasing trend, as observed in the optical microscopy. Indeed, cell death sharply increased at particular screening frequencies and amplitudes, whereas other frequencies or amplitudes were less detrimental. These results suggest that cell damage was more sensitive to certain scanning conditions, rather than simply high applied forces. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-04-06
    Description: Odontoblasts, which derive from dental papilla, are a type of terminally differentiated matrix-secreting cells. Previous studies have identified various transcription factors involved in the differentiation process of odontoblasts. We have recently found that Krüppel-like factor 4 ( Klf4 ) was expressed in the polarizing and elongating odontoblasts, but the function of Klf4 in the differentiation of odontoblasts is still unclear. We hypothesized Klf4 promoted the differentiation of odontoblasts by up-regulating some odontoblast-related genes. In this study, we found that the expression of Klf4 increased significantly during the odontoblastic differentiation of primary mouse dental papilla cells and the mouse dental papilla cell line-mDPC6T. Overexpression of Klf4 significantly up-regulated odontoblast-related genes, such as Dmp1 , Dspp , and Alp , and promoted the accumulation of mineral nodules. Knock-down of Klf4 down-regulated expression of Dmp1 , Dspp , and Alp , and inhibited mineral deposition. We applied in silico analysis and identified one target gene of Klf4 — Dmp1 . Based on further analysis of ChIP data, EMSA and dual luciferase activity assays, we confirmed that Klf4 was able to specifically bind to the Dmp1 promoter and transactivate its expression. Furthermore, forced expression of Dmp1 in the Klf4 knock-down mDPC6T cell line significantly recovered its odontoblastic differentiation ability. Our data confirmed our hypothesis that Klf4 promotes the differentiation of odontoblasts via the up-regulation of Dmp1 . © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-04-06
    Description: Nociception is the sensory mechanism used to detect cues that can harm an organism. The understanding of the neural networks and molecular controls of the reception of pain remains an ongoing challenge for biologists. While we have made significant progress in identifying a number of molecules and pathways that are involved in transduction of noxious stimuli, from the skin through the sensory receptor cell and from this to the spinal cord on into the central nervous system, we still lack a clear understanding of the perceptual processes, the responses to pain and the regulation of pain perception. Mice and rat animal models have been extensively used for nociception studies. However, the study of pain and noiception in these organisms can be rather laborious, costly and time consuming. Conversely the use of Drosophila and C. elegans may be affected by the large evolutionary distance between these animals and humans. We outline here the reasons why zebrafish presents a new and attractive model for studying pain reception and responses and the most interesting findings in the study of nociception that have been obtained using the zebrafish model. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-04-06
    Description: Transforming growth factor (TGF)-β is a multifunctional cytokine acting during development, tissue homeostasis, regeneration processes and disease progression. Due to its pleiotropic effects, tight regulation of the induced signaling cascades is mandatory. Caveolin proteins regulate a specific endocytic pathway and modulate diverse signaling pathways and thus have been related to severe disorders, e.g. cancer and fibrosis. Caveolin affects TGF-β/-Smad and non-Smad signaling in many ways and thus can determine the cellular outcome upon TGF-β challenge. Reciprocal regulation of caveolin and TGF-β is also evident, ranging from gene expression to miRNA regulation. Finally, there is in vivo evidence that this crosstalk influences disease development and progression. This review gives an overview about the multifaceted relations of caveolin and TGF-β. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-04-11
    Description: Factors affecting transcriptional elongation have been characterized extensively in in vitro, single cell (yeast) and cell culture systems; however, data from the context of multicellular organisms has been relatively scarce. While studies in homogeneous cell populations have been highly informative about the underlying molecular mechanisms and prevalence of polymerase pausing, they do not reveal the biological impact of perturbing this regulation in an animal. The core components regulating pausing are expressed in all animal cells and are recruited to the majority of genes, however, disrupting their function often results in discrete phenotypic effects. Mutations in genes encoding key regulators of transcriptional pausing have been recovered from several genetic screens for specific phenotypes or interactions with specific factors in mice, zebrafish and flies. Analysis of these mutations has revealed that control of transcriptional pausing is critical for a diverse range of biological pathways essential for animal development and survival. Animal studies reveal that correct regulation of promoter proximal pausing is critical for a diverse range of biological pathways during embryo development and also for health in adult life. This regulation facilitates fine control of gene expression levels and may also act as a barrier to uncontrolled cell proliferation.
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-04-11
    Description: Phosphatidylinositol 4,5-bisphosphate (PI4,5P 2 ) is a key lipid signaling molecule that regulates a vast array of biological activities. PI4,5P 2 can act directly as a messenger or can be utilized as a precursor to generate other messengers: inositol trisphosphate, diacylglycerol, or phosphatidylinositol 3,4,5-trisphosphate. PI4,5P 2 interacts with hundreds of different effector proteins. The enormous diversity of PI4,5P 2 effector proteins and the spatio-temporal control of PI4,5P 2 generation allow PI4,5P 2 signaling to control a broad spectrum of cellular functions. PI4,5P 2 is synthesized by phosphatidylinositol phosphate kinases (PIPKs). The array of PIPKs in cells enables their targeting to specific subcellular compartments through interactions with targeting factors that are often PI4,5P 2 effectors. These interactions are a mechanism to define spatial and temporal PI4,5P 2 synthesis and the specificity of PI4,5P 2 signaling. In turn, the regulation of PI4,5P 2 effectors at specific cellular compartments has implications for understanding how PI4,5P 2 controls cellular processes and its role in diseases. Site-directed synthesis of phosphatidylinositol-4,5-bisphosphate (PI4,5P 2 ) at distinct sub-cellular compartments mediates a variety of events, such as migration, cell-cell adhesion, transcription and vesicle trafficking. PI4,5P 2 regulated processes are critical for function at the cellular level, which is evident in neurons, platelet, and macrophage function.
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-04-06
    Description: Transforming growth factor (TGF)-β1 regulates diverse cellular functions. Particularly, TGF-β1 induces monocyte migration to sites of injury or inflammation in early period, whereas TGF-β1 inhibits cell migration in late phase. In this study, we attempted to understand how TGF-β1 suppresses cell migration in late phase. We found that TGF-β1 of short exposure induces the production of chemokines, such as macrophage inflammatory protein (MIP)-1α, by Raw 264.7 cells. However, knock-down of small GTPase RhoA by sh-RhoA inhibited the production of MIP-1α and macrophage migration, suggesting that RhoA is essential for expression of this chemokine. An activator of Epac ( e xchange p roteins directly a ctivated by c AMP; a guanine nucleotide exchange factor of Rap1), 8CPT-2Me-cAMP which leads to Rap1 activation abrogated MIP-1α expression and macrophage migration. Indeed, GTP-RhoA and GTP-Rap1 levels were reciprocally regulated in a time-dependent manner following TGF-β1 stimulation. 8CPT-2Me-cAMP suppressed GTP-RhoA levels, whereas si-Rap1 augmented GTP-RhoA levels and cell migration. TGF-β1 produced cAMP in late period and si-RNAs of Epac1 (exchange protein directly activated by cAMP 1) and Epac2 reduced GTP-Rap1 levels leading to promotion of GTP-RhoA levels. Furthermore, si-RNA of ARAP3 (Rap-dependent RhoGAP) increased GTP-RhoA level and cell migration. Therefore, we propose the mechanism that prolonged TGF-β1 treatment produce cAMP, which activates sequentially Epac, Rap1 and ARAP3, resulting in suppression of RhoA, chemokine expression, and macrophage migration. Contrary to the general concept that Rap1 stimulates cell migration, we demonstrated in this study that Rap1 inhibits cell migration by suppression of RhoA activity in response to TGF-β1. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-04-06
    Description: Polycyclic Aromatic Hydrocarbons (PAHs) are the products of incomplete combustion of organic materials, which are present in cigarette smoke, deep-fried food, and in natural crude oil. Since PAH-metabolites form DNA adducts and cause oxidative DNA damage, we asked if these environmental carcinogens could affect transforming potential of the human Polyomavirus JC oncoprotein, T-antigen (JCV T-antigen). We extracted DMSO soluble PAHs from Deepwater Horizon oil spill in the Gulf of Mexico (oil-PAHs), and detected several carcinogenic PAHs. The oil-PAHs were tested in exponentially growing cultures on normal mouse fibroblasts (R508), and in R508 stably expressing JCV T-antigen (R508/T). The oil-PAHs were cytotoxic only at relatively high doses (1:50–1:100 dilution), and at 1:500 dilution the growth and cell survival rates were practically unaffected. This non-toxic dose triggered however, a significant accumulation of reactive oxygen species (ROS), caused oxidative DNA damage and the formation of DNA double strand breaks (DSBs). Although oil-PAHs induced similar levels of DNA damage in R508 and R508/T cells, only T-antigen expressing cells demonstrated inhibition of high fidelity DNA repair by homologous recombination (HRR). In contrast, low-fidelity repair by non-homologous end joining (NHEJ) was unaffected. This potential mutagenic shift between DNA repair mechanisms was accompanied by a significant increase in clonal growth of R508/T cells chronically exposed to low doses of the oil-PAHs. Our results indicate for the first time carcinogenic synergy in which oil-PAHs trigger oxidative DNA damage and JCV T-antigen compromises DNA repair fidelity. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-04-06
    Description: The intracellular pH is regulated by a delicate balance of ion distribution across the plasma membrane and the physico-chemical properties of intra- and extracellular components. We analysed the effects of glycosaminoglycans on the intracellular pH of fibroblasts by using the fluorescent pH indicator BCECF-AM. Addition of hyaluronan, hyaluronan oligosaccharides, chondroitin sulfate or heparin to the culture medium of fibroblasts caused intracellular acidification from pH 7.2 to pH 6.7 in a concentration dependent manner. High molecular weight hyaluronan acidified more than hyaluronan oligosaccharides at the same concentrations. Hyaluronidase treatment or inhibition of hyaluronan export with xanthohumol led to intracellular alkalization. These observations indicated that extracellular glycosaminoglycans participate in intracellular pH regulation. The mechanism was explained by Donnan effects and molecular crowding. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-04-06
    Description: Purpose To test whether the use of a striatum weighted image may improve registration accuracy and diagnostic outcome in patients with parkinsonian syndromes (PS). Methods Weighted images were generated by increasing signal intensity of striatal voxels and used as intermediate dataset for co-registering the brain image onto template. Experimental validation was performed using an anthropomorphic striatal phantom. 123 I-FP-CIT SPECT binding ratios were manually determined in 67 PS subjects an and compared to those obtained using unsupervised standard (UWR) and weighted registered (WR) approach. Normalized cost function was used to evaluate the accuracy of phantom and subjects registered images to the template. Reproducibility between unsupervised and manual ratios was assessed by using intra-class correlation coefficient (ICC) and Bland and Altman analysis. Correlation coefficient was used to assess the dependence of semi-quantitative ratios on clinical findings. Results Weighted method improves accuracy of brain registration onto template as determined by cost function in phantom (0.86 ± 0.06vs.0.98 ± 0.02; Student's t test, P = 0.04) and in subject scans (0.69 ± 0.06vs.0.53 ± 0.06; Student's t test, P 〈 0.0001). Agreement between manual and unsupervised derived binding ratios as measured by ICC was significantly higher on WR as compared to UWR images (0.91vs.0.76). Motor UPDRS score was significantly correlated with manual and unsupervised derived binding potential. In phantom as well as in subjects studies, correlations were more significant using the WR method (BPm: R 2  = 0.36,p = 0.0001; BPwr: R 2  = 0.368, P  = 0.0001; BPuwr: R 2  = 0.300, P  = 0.0008). Conclusion Weighted registration improves accuracy of binding potential estimates and may be a promising approach to enhance the diagnostic outcome of SPECT imaging, correlation with disease severity, and for monitoring disease progression in parkinsonian syndromes. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2013-04-09
    Description: No abstract is available for this article.
    Print ISSN: 0263-6484
    Electronic ISSN: 1099-0844
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-04-09
    Description: A normal fertilized human zygote contains two pronuclei, but zygotes may also display one, three, or even more pronuclei resulting from irregular insemination or meiotic division. Today diploid and triploid human embryonic stem cell (hESC) lines have been derived from tripronuclear (3PN) triploid zygotes, and an in-vitro fertilization (IVF) baby was born from a rescued diploid zygote by removing the extra male pronucleus of the 3PN zygote. However, whether hESCs can be derived from a rescued 3PN zygote is still unknown. Here, by microsurgical pronuclear removal, we restored 61 diploid zygotes from 3PN zygotes donated by 35 couples, and 11 blastocysts developed with a blastocyst rate of 18.0%, which seems higher than that of nonrescued 3PN zygotes according to previous reports. After the whole zona pellucida free embryos were plated onto feeder cells to grow and passage, 2 hESC lines (CCRM-hESC-22 and CCRM-hESC-23) were generated and both carried normal karyotype (46, XY). The hESC lines were then characterized by morphology, expansion in vitro , and expression of specific markers of alkaline phosphatase, OCT4, SSEA4, TRA-1-60 and TRA-1-81. Furthermore, the pluripotency of these 2 hESC lines was confirmed by in vitro embryoid body formation and in vivo teratoma production. Our study indicates that depronucleared 3PN zygotes can improve the blastocysts formation rate, and normal hESC lines can be derived from those corrected 2PN embryos. Based on their multi-directional differentiation potential in vitro , the established hESC lines could be applied to the developmental risk assessment for IVF babies born from restored zygotes. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-03-30
    Description: Transplantation of functional insulin-producing cells (IPCs) provides a novel mode for insulin replacement, but is often accompanied by many undesirable side effects. Our previous studies suggested that IPCs could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells. To obtain a better method through which to acquire more similar IPCs, we compared the difference between IPCs of the GLP-1 group and IPCs of the non-GLP-1 group in the morphological features in cellular level and physiological function. The levels of insulin secretion were measured by ELISA. The insulin and Glucagon-like peptide-1 (GLP-1) mRNA gene expression was determined by real-time quantitative PCR. The morphological features were detected by atomic force microscopy (AFM)and laser confocal scanning microscopy (LCSM). Intracellular Ca 2+ levels and Glucagon-like peptide-1 Receptor (GLP-1R) levels were determined by flow cytometer (FCM).We found that IPCs of the GLP-1group had bigger membrane particle size and average roughness (Ra) than IPCs of the non-GLP-1 group but still smaller than normal human pancreatic beta cells. The physiology function of IPCs of the GLP-1 group were much closer to normal human pancreatic beta cells than IPCs of the non-GLP-1 group. GLP-1 could improve the similarity of insulin-producing cells from human adipose tissue-derived mesenchymal stem cells and pancreatic beta cells in cellular ultrastructure and function. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-03-30
    Description: ABSTRACT Glutathione has traditionally been considered as an antioxidant that protects cells against oxidative stress. Hence, the loss of reduced glutathione and formation of glutathione disulfide is considered a classical parameter of oxidative stress that is increased in diseases. Recent studies have emerged that demonstrate that glutathione plays a more direct role in biological and pathophysiological processes through covalent modification to reactive cysteines within proteins, a process known as S-glutathionylation. The formation of an S-glutathionylated moiety within the protein can lead to structural and functional modifications. Activation, inactivation, loss of function, and gain of function have all been attributed to S-glutathionylation. In pathophysiological settings, S-glutathionylation is tightly regulated. This perspective offers a concise overview of the emerging field of protein thiol redox modifications. We will also cover newly developed methodology to detect S-glutathionylation in situ , which will enable further discovery into the role of S-glutathionylation in biology and disease. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-03-30
    Description: Paget's disease of bone (PDB) is a chronic focal skeletal disorder characterized by excessive bone resorption followed by disorganized new bone formation. Measles virus nucleocapsid (MVNP) is implicated in pathogenesis of PDB. RANK ligand (RANKL), a critical osteoclastogenic factor expressed on bone marrow stromal/preosteoblast cells is upregulated in PDB. We recently demonstrated that fibroblast growth factor-2 (FGF-2) which induces RANKL expression is elevated in PDB. In this study, we hypothesized that FGF-2 modulates suppressors of cytokine signaling (SOCS) to induce RANKL expression in PDB. We identified increased levels of SOCS-1/3 mRNA expression in bone marrow mononuclear cells derived from patients with PDB compared to normal subjects. Interestingly, conditioned media obtained from MVNP transduced osteoclast progenitor cells significantly increased SOCS-1/3 mRNA expression in stromal/preosteoblast cells. We next examined if SOCS participates in FGF-2 signaling to modulate RANKL gene expression. We showed that FGF-2 stimulation significantly increased SOCS-1/3 expression in human bone marrow stromal/preosteoblast cells. In addition, co-expression of SOCS-1/3 with hRANKL gene promoter-luciferase reporter plasmid in marrow stromal cells demonstrated a significant increase in promoter activity without FGF-2 stimulation. Furthermore, siRNA inhibition of STAT-1 suppresses FGF-2 increased SOCS-1/3 expression in these cells. Thus, our results suggest that SOCS participates in FGF-2 modulation of RANKL expression in PDB. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-03-30
    Description: The molecular mechanisms linking A β to the onset of neurotoxicity are still largely unknown, but several lines of evidence point to reactive oxygen species, which are produced even under the effect of nanomolar concentrations of soluble A β -oligomers. The consequent oxidative stress is considered as the mediator of a cascade of degenerative events in many neurological disorders. Epidemiological studies indicate that dietary habits and antioxidants from diet can influence the incidence of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In the recent years, a number of reviews have reported on neuroprotective effects of polyphenols in cell and animal models. However, the majority of these studies have focused only on the anti-oxidant properties of these compounds and less on the mechanism/s of action at cellular level. In this work we investigated the effect of cocoa polyphenolic extract on a human AD in vitro model. The results obtained, other than confirming the anti-oxidant properties of cocoa, demonstrate that cocoa polyphenols triggers neuroprotection by activating BDNF survival pathway, both on Aß plaque treated cells and on Aß oligomers treated cells, resulting in the counteraction of neurite dystrophy. On the light of the results obtained the use of cocoa powder as preventive agent for neurodegeneration is further supported. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-04-02
    Description: Micro RNA (miRNA) is a small non-coding posttranscriptional RNA regulator that is involved in a variety of biological events. In order to specify the role of miRNAs in cartilage metabolism, we comparatively analyzed the expression profile of known miRNAs in chicken sternum chondrocytes representing early and late differentiation stages. Interestingly, none of the miRNAs displaying strong expression levels showed remarkable changes along with differentiation, suggesting their roles in maintaining the homeostasis rather than cytodifferentiation of chondrocytes. Among these miRNAs, miR-181a, which is known to play critical roles in a number of tissues, was selected and was further characterized. Human microarray analysis revealed remarkably stronger expression of miR-181a in human HCS-2/8 cells, which strongly maintained a chondrocytic phenotype, than in HeLa cells, indicating its significant role in chondrocytes. Indeed, subsequent investigation indicated that miR-181a repressed the expression of 2 genes involved in cartilage development. One was CCN family member 1 (CCN1), which promotes chondrogenesis; and the other, the gene encoding the core protein of aggrecan, a major cartilaginous proteoglycan, aggrecan. Based on these findings, negative feedback system via miR-181a to conserve the integrity of the cartilaginous phenotype may be proposed. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-04-02
    Description: ABSTRACT Phosphoinositide 3-kinase proteins are composed by a catalytic p110 subunit and a regulatory p85 subunit. There are three classes of PI3K, named class I, II and III, on the bases of the protein domain constituting and determining their specificity. The first one is the best characterized and includes a number of key elements for the integration of different cellular signals. Regulatory p85 subunit shares with the catalytic p110 subunit, a N-terminal SH3 domain showing homology with the protein domain Rho-GTP-ase. After cell stimulation, all class I PI3Ks are recruited to the inner face of the plasma membrane, where they generate phosphatidylinositol-3,4,5-trisphosphate by direct phosphorylation of phosphatidylinositol-4,5-bisphosphate. All pathways trigger the control of different phenomena such as cell growth, proliferation, apoptosis, adhesion and migration through various downstream effectors. We have previously provided direct evidences that a Serine in position 83, adjacent to the N-terminal SH3 domain of regulatory subunit of PI3K, is a substrate of PKA. The aim of this work is to confirm the role of p85αPI3KSer83 in regulating cell proliferation, migration and invasion in prostate cancer cells LNCaP. To this purpose cells were transfected with mutant forms of p85, where Serine was replaced by Alanine, where phosphorylation is prevented, or Aspartic Acid, to mimic the phosphorylated residue. The findings of this study suggest that identifying a peptide mimicking the sequence adjacent to Ser 83 may be used to produce antibodies against this residue that can be proposed as usefool tool for prognosis by correlating phosphorylation at Ser83 with tumor stage. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-04-11
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-04-11
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-04-11
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-04-11
    Description: The increased incidence of morbidity and mortality due to Clostridium difficile infection, had led to the emergence of fecal microbial transplantation (FMT) as a highly successful treatment. From this, a 32 strain stool substitute has been derived, and successfully tested in a pilot human study. These approaches could revolutionize not only medical care of infectious diseases, but potentially many other conditions linked to the human microbiome. But a second revolution may be needed in order for regulatory agencies, society and medical practitioners to accept and utilize these interventions, monitor their long term effects, have a degree of control over their use, or at a minimum provide guidelines for donors and recipients. If a simple replacement of your gut microbiota by someone else's could improve your health and ability to function, would you do it? How would you select the donor and would the “authorities” let you perform the transplant? The age of the microbiome is here, but is society ready?
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-09-10
    Description: Many species maintain cytosine DNA methyltransferase (MTase) genes belonging to the Dnmt2 family. Prokaryotic modification-restriction systems utilize DNA methylation to distinguish between self and foreign DNA, and cytosine methylation in eukaryotic DNA contributes to epigenetic mechanisms that control gene expression. However, Dnmt2 proteins display only low or no DNA MTase activity, making this protein family the odd and enigmatic family member. Recent evidence showed that Dnmt2 proteins are not DNA but RNA MTases with functions in biological processes as diverse as stress responses and RNA-mediated inheritance. These observations not only raise profound questions regarding the perceived substrate specificities of cytosine MTase, but also suggest links between DNA and RNA modification systems. Here, we speculate that Dnmt2 proteins might be part of an ancient cytosine modification toolbox that is used to successfully respond to environmental challenges, including constantly evolving RNA and DNA substrates. Recent observations indicated that Dnmt2 proteins, which belong to a highly conserved DNA cytosine methyltransferase family, are important for the response to RNA-based stressors, including transposons, viruses, and experimentally introduced small RNAs. Is Dnmt2 part of an ancient defense system that employs nucleotide modifications against invading pathogens?
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-09-15
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-09-21
    Description: Inflammatory immune cells, when activated, display much the same metabolic profile as a glycolytic tumor cell. This involves a shift in metabolism away from oxidative phosphorylation towards aerobic glycolysis, a phenomenon known as the Warburg effect. The result of this change in macrophages is to rapidly provide ATP and metabolic intermediates for the biosynthesis of immune and inflammatory proteins. In addition, a rise in certain tricarboxylic acid cycle intermediates occurs notably in citrate for lipid biosynthesis, and succinate, which activates the transcription factor Hypoxia-inducible factor. In this review we take a look at the emerging evidence for a role for the Warburg effect in the immune and inflammatory responses. The reprogramming of metabolic pathways in macrophages, dendritic cells, and T cells could have relevance in the pathogenesis of inflammatory and metabolic diseases and might provide novel therapeutic strategies. Recent studies reveal that inflammatory cells, when activated, display similar metabolic traits as cancer cells. During an inflammatory response or infection pro-inflammatory immune cells can shift their metabolism away from oxidative phosphorylation towards a high rate of glycolysis, a phenomenon known as the Warburg effect.
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    Wiley
    In: BioEssays
    Publication Date: 2013-09-21
    Description: The fast advancing RNA-seq technology has unveiled an unexpected diversity and expression specificity of 3′ untranslated regions (3′UTRs) of mRNAs. In particular, neural mRNAs seem to express significantly longer 3′UTRs, some of which are over 10 kb in length. The extensive elongation of 3′UTRs in neural tissues provides intriguing possibilities for cell type-specific regulations that are governed by miRNAs, RNA-binding proteins and ribonucleoprotein aggregates. In this article, we review recent progress in the characterization of mRNA 3′UTRs and discuss their implications in the understanding of 3′UTR-mediated gene regulation. Differential expression of short and long 3′UTRs, especially in neurons, presents technical challenges for experimental characterization. Such dynamic expression of 3′UTR isoforms, however, provides a mechanism to regulate protein production of both individual and a pool of transcripts in physiological and pathological conditions.
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-09-21
    Description: Astrocytes, the most common cell type in the brain, play a principal role in the repair of damaged brain tissues during external radiotherapy of brain tumours. As a downstream gene of p53, the effects of Krüppel-like factor 4 (KLF4) in response to X-ray-induced DNA damage in astrocytes are unclear. In the present study, KLF4 expression was upregulated after the exposure of astrocytes isolated from the murine brain. Inhibition of KLF4 expression using lentiviral transduction produced less double-strand DNA breaks (DSB) determined by a neutral comet assay and flow cytometric analysis of phosphorylated histone family 2A variant and more single-strand DNA breaks (SSB) determined by a basic comet assay when the astrocytes were exposed to 4 Gy of X-ray radiation. These data suggest that radiation exposure of the tissues around brain tumour during radiation therapy causes KLF4 overexpression in astrocytes, which induces more DSB and reduces SSB. This causes the adverse effects of radiation therapy in the treatment of brain tumours. Copyright © 2013 John Wiley & Sons, Ltd.
    Print ISSN: 0263-6484
    Electronic ISSN: 1099-0844
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-09-24
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-09-25
    Description: Annonaceous acetogenins (ACGs) are a group of fatty acid-derivatives with potent anticancer effects. In the present study, we found desacetyluvaricin (Dau) exhibited notable in vitro antiproliferative effect on SW480 human colorectal carcinoma cells with IC 50 value of 14 nM. The studies on the underlying mechanisms revealed that Dau inhibited the cancer cell growth through induction of S phase cell cycle arrest from 11.3% (control) to 33.2% (160 nM Dau), which was evidenced by the decreased protein expression of cyclin A Overproduction of superoxide, intracellular DNA damage, and inhibition of MEK/ERK signaling pathway, were also found involved in cells exposed to Dau. Moreover, pre-treatment of the cells with ascorbic acid significantly prevented the Dau-induced overproduction of superoxide, DNA damage and cell cycle arrest. Taken together, our results suggest that Dau induces S phase arrest in cancer cells by firstly superoxide overproduction and subsequently the involvement of various signaling pathways. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-09-25
    Description: Obesity is a major risk factor for the development of asthma, and causes severe, uncontrolled disease that responds poorly to therapy. The obese state alters early onset allergic asthma, and leads to the development of a novel form of late onset asthma secondary to obesity. The presentation of early onset allergic asthma is altered through effects on immune function. Factors such as mechanical loading, effects of adipokines on airways, altered diet, insulin resistance and altered metabolism of nitric oxide likely all contribute to increased airway reactivity in obesity, causing late onset asthma in obesity. Obesity also alters responses to environmental factors such as ozone and particulate matter. Focused studies to understand the importance of these factors in the pathogenesis of airway disease in obesity will be essential to develop therapies to intervene in this new epidemic of airway disease. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-09-25
    Description: Angiogenesis, the process of new blood vessel formation and growth from already existing venules is critical in vascular development and homeostasis controlled by the balance of pro- and anti-angiogenic factors. Emerging evidence indicates the development, progression and metastasis of various human cancers are strongly relied on angiogenesis. However, molecular mechanisms that underlie the complex regulation of angiogenic processes are still not fully elucidated. Recent studies revealed that microRNAs (miRNAs) were important regulators of tumor angiogenesis and the entire research in this area has entered into a so-called “miRNAs era”. Thus, miRNAs might be important therapeutic targets or biomarkers for cancer. Due to the complexity of miRNA regulating mechanisms, how specific miRNAs intersect with and modulate tumor angiogenesis is still unclear. The conflicting results of the same miRNAs from different groups indicated that miRNAs might possess potent activity in a cell type or cell context specific manner. Here, we present a summary of latest advances in understanding the roles of angiogenic miRNAs as potential tools or targets in cancer therapy. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-09-25
    Description: G-protein coupled receptors (GPCRs) are a large family of proteins that coordinate extracellular signals to produce physiologic outcomes. Adenosine receptors (AR) are one class of GPCRs that have been shown to regulate functions as diverse as inflammation, blood flow, and cellular differentiation. Adenosine signals through four GPCRs that either inhibit (A1AR and A3AR) or activate (A2aAR and A2bAR) adenylyl cyclase. This review will focus on the role of GPCRs, and in particular, adenosine receptors, in adipogenesis. Preadipocytes differentiate to mature adipocytes as the adipose tissue expands to compensate for the consumption of excess nutrients. These newly generated adipocytes contribute to maintaining metabolic homeostasis. Understanding the key drivers of this differentiation process can aid the development of therapeutics to combat the growing obesity epidemic and associated metabolic consequences. Although much literature has covered the transcriptional events that culminate in the formation of an adipocyte, less focus has been on receptor-mediated extracellular signals that direct this process. This review will highlight GPCRs and their downstream messengers as significant players controlling adipocyte differentiation. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-09-25
    Description: The Toll and Toll-Like Receptor signaling pathways are evolutionarily conserved pathways that regulate innate immunity in insects and mammals. While efforts have been made to clarify the signal transduction events that occur during infection, much less is known about the components that maintain immune quiescence. Here we show that retromer, an intracellular protein complex known for regulating vesicle trafficking, functions in modulating the Toll pathway in Drosophila melanogaster . In mutant animals lacking retromer function, the Toll pathway but not JAK-STAT or IMD pathway is activated, triggering both cellular and humoral responses. Genetic epistasis and clonal analysis suggest that retromer regulates a component that acts upstream of Toll. Our data further show that in the mutant the Toll ligand Spätzle has a processing pattern similar to that of after infection. Together, the results suggest a novel function of retromer in regulating Toll pathway and innate immunity at a step that modulates ligand processing or activity. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-12-17
    Description: Secreted phosphoprotein 24 kDa (Spp24) is an apatite- and BMP/TGF-β cytokine-binding phosphoprotein found in serum and many tissues, including bone. N-terminally intact degradation products ranging in size from 14 kDa to 23 kDa have been found in bone. The cleavage sites in Spp24 that produce these short forms have not been definitively identified, and the biological activities and mechanisms of action of Spp24 and its degradation products have not been fully elucidated. We found that the C-terminus of Spp24 is labile to proteolysis by furin, kallikrein, lactoferrin, and trypsin, indicating that both extracellular and intracellular proteolytic events could account for the generation of biologically-active Spp18, Spp16, and Spp14. We determined the effects of these truncation products on kinase-mediated signal transduction, gene expression, and osteoblastic differentiation in W-20-17 bone marrow stromal cells cultured in basal or pro-osteogenic media. After culturing for five days, all forms inhibited BMP-2-stimulated osteoblastic differentiation, assessed as induction of alkaline phosphatase activity, in basal, but not pro-osteogenic media. After 10 days, they also inhibited BMP-2-stimulated mineral deposition in pro-osteogenic media. Spp24 had no effect on Erk1/2 phosphorylation, but Spp18 stimulated short-term Erk1/2, MEK 1/2, and p38 phosphorylation. Pertussis toxin and a MEK1/2 inhibitor ablated Spp18-stimulated Erk 1/2 phosphorylation, indicating a role for G i proteins and MEK1/2 in the Spp18-stimulated Erk1/2 phosphorylation cascade. Truncation products, but not full-length Spp24, stimulated RUNX2, ATF4, and CSF1 transcription. This suggests that Spp24 truncation products have effects on osteoblastic differentiation mediated by kinase pathways that are independent of exogenous BMP/TGF-β cytokines. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-12-17
    Description: Similar to phosphorylation, transient conjugation of ubiquitin to target proteins (ubiquitination) mediated by the concerted action of ubiquitin ligases and de-ubiquitinating enzymes (DUBs) can affect substrate function. As obligate intracellular parasites, viruses rely on different cellular pathways for their own replication and the well conserved ubiquitin conjugating/de-conjugating system is not an exception. Viruses not only usurp the host proteins involved in the ubiquitination/de-ubiquitination process, but they also encode their own ubiquitin ligases and DUBs. Here we report that an N-terminal variant of the herpes simplex virus (HSV) type-1 large tegument protein VP1/2 (VP1/2 1–767 ), encompassing an active DUB domain (herpesvirus tegument ubiquitin specific protease, htUSP), and TSG101, a component of the endosomal sorting complex required for transport (ESCRT)-I, functionally interact. In particular, VP1/2 1–767 modulates TSG101 ubiquitination and influences its intracellular distribution. Given the role played by the ESCRT machinery in crucial steps of both cellular pathways and viral life cycle, the identification of TSG101 as a cellular target for the HSV-1 specific de-ubiquitinating enzyme contributes to the clarification of the still under debate function of viral encoded DUBs highly conserved throughout the Herpesviridae family. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-12-18
    Description: Sarcopenia and osteoporosis have recently been noted for their relationship with locomotive syndrome and increased number of older people. Sarcopenia is defined by decreased muscle mass and impaired muscle function, which may be associated with frailty. Several clinical data have indicated that increased muscle mass is related to increased bone mass and reduced fracture risk. Genetic, endocrine and mechanical factors as well as inflammatory and nutritional states concurrently affect muscle tissues and bone metabolism. Several genes, including myostatin and α-actinin 3, have been shown in a genome-wide association study (GWAS) to be associated with both sarcopenia and osteoporosis. Vitamin D, growth hormone and testosterone as well as pathological disorders, such as an excess in glucocorticoid and diabetes, affect both muscle and bone. Basic and clinical research of bone metabolism and muscle biology suggests that bone interacts with skeletal muscle via signaling from local and humoral factors in addition to their musculoskeletal function. However, the physiological and pathological mechanisms related to muscle and bone interactions remain unclear. We found that Tmem119 may play a critical role in the commitment of myoprogenitor cells to the osteoblast lineage. We also reported that osteoglycin and FAM5C might be muscle-derived humoral osteogenic factors. Other factors, including myostatin, osteonectin, insulin-like growth factor I, irisin and osteocalcin, may be associated with the interactions between muscle tissues and bone metabolism. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...