ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Etna  (4)
  • 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology  (3)
  • Springer  (4)
  • Blackwell Publishing Ltd  (3)
  • Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
  • BioMed Central
  • 2010-2014  (7)
  • 1950-1954
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: Several volcanoes worldwide have shown changes in their stress state as a consequence of the deformation produced by the pressurization of a magmatic body. This study investigates seismic swarms occurring on the western flank of Mt. Etna in January 1997 - January 1998. Integrating seismic observations and geodetic data, we constrained the seismogenic fault system, and on the basis of stress tensor inversion and SHMAX analyses, we infer an inflating pressure source located at 5.5 km b.s.l. beneath the west portion of summit area. Evaluation of Coulomb failure stress (CFS) related to the proposed model, showed how a large part of the seismogenic fault underwent a significant CFS increase (500 kPa). We infer the presence of a sub-vertical faulted region, potentially weak, N50°E oriented beneath the western sector of Mt. Etna. This structure could be brought closer to failure thereby generating seismic swarms as the effect of elastic stress transfer induced by movement and/or overpressure of magmatic masses within the upper crust under the volcano.
    Description: This research was funded by the INGV–DPC 2007–2009 Agreement (Project V4_Flank).
    Description: Published
    Description: 339-348
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; modelling ; Seismicity ; GPS monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9±0.27‰ and −1.41± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work values of Etna CO2 from~ −4‰, in the 1970’s and the 1980’s, to~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.
    Description: Published
    Description: 531-542
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic plume ; Carbon isotope ; Etna ; Magmatic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9 ± 0.27‰ and −1.41 ± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work highlights a temporal trend of systematic increase of δ13C values of Etna CO2 from ~ −4‰, in the 1970’s and the 1980’s, to ~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.
    Description: In press
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Volcanic plume ; Carbon isotope ; Etna ; Magmatic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Etna’s 2001 basaltic lava flow provided a good example of the distal flow segment between the flow front and stable channel, across which the flow evolves from channel-contained to dispersed. This zone was mapped with meter precision using LIDAR data collected during 2004 and 2005. These data, supported by field mapping, show that the flow front comprised eight lobes each 10 to 20 m high. The flow front appears to have advanced not as a single unit, but as a series of lobes moving forward one lobe at a time. Primary lobes were centered on the channel axis and marginal lobes were off-axis. The lobes advanced as breakouts of low-yield-strength lava from the flow core of the stalled flow front. Marginal lobes were abandoned and contributed to marginal levees flanking the transitional channel. For Etna’s 2001 flow, the transitional channel is 140 m wide, 700 m long and fed a 240-m-long zone of dispersed flow; the change from stable to transitional channel occurred at a major reduction in slope. Above this, the stable channel is 5.2 km long, 55 to 105 m wide and bounded by 15- to 25-m-high levees, and the stable channel is located over a previous channel. In a final stage of activity, lava ponding at the break-in-slope that marks the terminus of the stable channel put pressure on the eastern levee, causing it to fail. Liberated lava then fed a final break-out to the east. Similar flow front-features occur at other volcanoes, indicating that similar processes are characteristic of dispersed flow zones.
    Description: Published
    Description: 119-127
    Description: 1.10. TTC - Telerilevamento
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Basalt lava ; Channelised lava flow ; Flow front ; Zone of dispersed flow ; Flow dynamics ; LIDAR ; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In the present work we analyse one of the active normal faults affecting the central Apennines, i.e. the Mt. Morrone normal fault system. This tectonic structure, which comprises two parallel, NW-SE trending fault segments, is considered as potentially responsible for earthquakes of magnitude C 6.5 and its last activation probably occurred during the second century AD. Structural observations performed along the fault planes have allowed to define the mainly normal kinematics of the tectonic structure, fitting an approximately N 20 trending extensional deformation. Geological and geomorphological investigations performed along the whole Mt. Morrone south-western slopes permitted us to identify the displacement of alluvial fans, attributed to Middle and Late Pleistocene by means of tephro-stratigraphic analyses and geomorphological correlations with dated lacustrine sequences, along the western fault branch. This allowed to evaluate in 0.4 ± 0.07 mm/year the slip rate of this segment. On the other hand, the lack of synchronous landforms and/or deposits that can be correlated across the eastern fault segment prevented the definition of the slip rate related to this fault branch. Nevertheless, basing on a critical review of the available literature dealing with normal fault systems evolution, we hypothesised a total slip rate of the fault system in the range of 0.4 ± 0.07 to 0.8 ± 0.09 mm/year. Moreover, basing on the length at surface of the Mt. Morrone fault system (i.e. 22–23 km) we estimated the maximum expected magnitude of an earthquake that might originate along this tectonic structure in the order of 6.6–6.7.
    Description: Dipartimento della Protezione Civile Nazionale
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Active fault ; Slip rate ; Maximum expected magnitude ; Continental stratigraphy ; Sulmona basin ; Central Apennines ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-24
    Description: An earthquake of Mw=6.3 struck L’Aquila town (central Italy) on April 6, 2009 rupturing an approximately 18 km long SW-dipping normal fault. The aftershock area extended for a length of more than 35 km and included major aftershocks on April 7 and 9, and thousands of minor events. Surface faulting occurred along the SW-dipping Paganica fault with a continuous extent of ~2.5 km. Ruptures consist of open cracks and vertical dislocations or warps (0.1 maximum throw) with an orientation of N130°-N140°. Small triggered slip and shaking effects also took place along nearby synthetic and antithetic normal faults. The observed limited extent, and small surface displacement, of the Paganica ruptures with respect to the height of the fault scarps and vertical throws of paleoearthquakes along faults in the area, puts the faulting associated with the L’Aquila earthquake in perspective with respect to the maximum expected magnitude, and the regional seismic hazard.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: 2009 L’Aquila seismic sequence ; co-seismic surface effects ; earthquake geology ; normal faulting earthquake ; Abruzzi, central Apennines ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-24
    Description: An earthquake of Mw = 6.3 struck L Aquila town (central Italy) on 6 April 2009 rupturing an ~18-km-long SW-dipping normal fault. The aftershock area extended for a length of more than 35 km and included major aftershocks on 7 and 9 April and thousands of minor events. Surface faulting occurred along the SW-dipping Paganica fault with a continuous extent of ~2.5 km. Ruptures consist of open cracks and vertical dislocations or warps (0.1m maximum throw) with an orientation of N130°–140°. Small triggered slip and shaking effects also took place along nearby synthetic and antithetic normal faults. The observed limited extent and small surface displacement of the Paganica ruptures with respect to the height of the fault scarps and vertical throws of palaeo-earthquakes along faults in the area put the faulting associated with the L' Aquila earthquake in perspective with respect to the maximum expected magnitude and the regional seismic hazard.
    Description: Published
    Description: 43-51
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: surface faulting from moderate earthquake ; coseismic effects ; L'Aquila earthquake ; cemtral Italy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...