ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (274)
  • SPACE SCIENCES
  • Structural Mechanics
  • 2010-2014  (253)
  • 1955-1959  (21)
  • 1
    Publication Date: 2018-06-06
    Description: The NASA Engineering and Safety Center (NESC) and Lockheed Martin (LM) performed random vibration testing on a single spring strut development unit to assess its ability to withstand qualification level random vibration environments. Failure of the strut while exposed to random vibration resulted in a follow-on failure investigation, design changes, and additional development tests. This paper focuses on the results of the failure investigations referenced in detail in the NESC final report [1] including identified lessons learned to aid in future design iterations of the spring strut and to help other mechanism developers avoid similar pitfalls.
    Keywords: Structural Mechanics
    Type: The 42nd Aerospace Mechanism Symposium; 391-404; NASA/CP-2014-217519
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The James Webb Space Telescope consists of three main components, the Integrated Science Instrument Module (ISIM) Element, the Optical Telescope Element (OTE), and the Spacecraft Element. The ISIM and OTE are being assembled at the National Aeronautics and Space Administration's Goddard Spaceflight Center (GSFC). The combined OTE and ISIM Elements, called OTIS, will undergo sine vibration testing before leaving Goddard. OTIS is the largest payload ever tested at Goddard and the existing GSFC vibration facilities are incapable of performing a sine vibration test of the OTIS payload. As a result, a new large vibration test facility is being designed. The new facility will consist of a vertical system with a guided head expander and a horizontal system with a hydrostatic slip table. The project is currently in the final design phase with installation to begin in early 2015 and the facility is expected to be operational by late 2015. This paper will describe the unique requirements for a new large vibration test facility and present the selected final design concepts.
    Keywords: Structural Mechanics
    Type: GSFC-E-DAA-TN18297 , Space Simulation Conference; Nov 03, 2014 - Nov 06, 2014; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A modal test was performed on the six-meter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test article to gain a firm understanding of the dynamic characteristics of the unloaded structure within the low frequency range. The tests involved various configurations of the HIAD to understand the influence of the tri-torus, the varying pressure within the toroids and the influence of straps. The primary test was conducted utilizing an eletrodynamic shaker and the results were verified using a step relaxation technique. The analysis results show an increase in the structure's stiffness with respect to increasing pressure. The results also show the rise of coupled modes with the tri-torus configurations. During the testing activity, the attached straps exhibited a behavior that is similar to that described as fuzzy structures in the literature. Therefore extensive tests were also performed by utilizing foam to mitigate these effects as well as understand the modal parameters of these fuzzy sub structures. Results are being utilized to update the finite element model of the six-meter HIAD and to gain a better understanding of the modeling of complex inflatable structures.
    Keywords: Structural Mechanics
    Type: NF1676L-17457 , IMAC Conference & Exposition on Structural Dynamics; Feb 03, 2014 - Feb 06, 2014; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Results from previous shell buckling studies are presented that illustrate some of the unique and powerful capabilities in the STAGS finite element analysis code that have made it an indispensable tool in structures research at NASA over the past few decades. In particular, prototypical results from the development and validation of high-fidelity buckling simulations are presented for several unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells along with a discussion on the specific methods and user-defined subroutines in STAGS that are used to carry out the high-fidelity simulations. These simulations accurately account for the effects of geometric shell-wall imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and elastic boundary conditions. The analysis procedure uses a combination of nonlinear quasi-static and transient dynamic solution algorithms to predict the prebuckling and unstable collapse response characteristics of the cylinders. Finally, the use of high-fidelity models in the development of analysis-based shell-buckling knockdown (design) factors is demonstrated.
    Keywords: Structural Mechanics
    Type: AIAA Paper 2014-0846 , NF1676L-16755 , AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; Jan 13, 2014 - Jan 17, 2014; National Harbor, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test Bed, X-56A, aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of X-56A. The ground vibration test validated structural dynamic finite element model of the X-56A is created in this study. The structural dynamic finite element model of the X-56A is improved using a model tuning tool. In this study, two different weight configurations of the X-56A have been improved in a single optimization run.
    Keywords: Structural Mechanics
    Type: DFRC-E-DAA-TN14986 , AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference; Jun 16, 2014 - Jun 20, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the Multi Utility Technology Test-bed, X-56A aircraft, is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is created in this study. The structural dynamic finite element model of the X-56A aircraft is improved using a model tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, while other properties such as center of gravity location, total weight, and offdiagonal terms of the mass orthogonality matrix were used as constraints. The end result was a more improved and desirable structural dynamic finite element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.
    Keywords: Structural Mechanics
    Type: DFRC-E-DAA-TN13855 , AIAA Aviation 2014; Jun 16, 2014 - Jun 20, 2014; Atlanta, GA; United States|AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference; Jun 16, 2014 - Jun 20, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: In 2010, NASA Langley Research Center obtained residual hardware from the US Army's Survivable Affordable Repairable Airframe Program (SARAP). The hardware consisted of a composite fuselage section that was representative of the center section of a Black Hawk helicopter. The section was fabricated by Sikorsky Aircraft Corporation and designated the Test Validation Article (TVA). The TVA was subjected to a vertical drop test in 2008 to evaluate a tilting roof concept to limit the intrusion of overhead mass items, such as the rotor transmission, into the fuselage cabin. As a result of the 2008 test, damage to the hardware was limited primarily to the roof. Consequently, when the post-test article was obtained in 2010, the roof area was removed and the remaining structure was cut into six different types of test specimens including: (1) tension and compression coupons for material property characterization, (2) I-beam sections, (3) T-sections, (4) cruciform sections, (5) a large subfloor section, and (6) a forward framed fuselage section. In 2011, NASA and Sikorsky entered into a cooperative research agreement to study the impact responses of composite airframe structures and to evaluate the capabilities of the explicit transient dynamic finite element code, LS-DYNA, to simulate these responses including damage initiation and progressive failure. Finite element models of the composite specimens were developed and impact simulations were performed. The properties of the composite material were represented using both a progressive in-plane damage model (Mat 54) and a continuum damage mechanics model (Mat 58) in LS-DYNA. This paper provides test-analysis comparisons of time history responses and the location and type of damage for representative I-beam, T-section, and cruciform section components.
    Keywords: Structural Mechanics
    Type: NF1676L-17592 , International LS-DYNA Users Conference; Jun 03, 2014 - Jun 05, 2014; Dearborn, MI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Development of repair technology is vital to the long-term application of new structural concepts on aircraft structure. The design, analysis, and testing of a repair concept applicable to a stiffened composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure was recently completed. The damage scenario considered was a mid-bay to mid-bay saw-cut with a severed stiffener, flange, and skin. A bolted metallic repair was selected so that it could be easily applied in the operational environment. The present work describes results obtained from tension and pressure panel tests conducted to validate both the repair concept and finite element analysis techniques used in the design effort. Simulation and experimental strain and displacement results show good correlation, indicating that the finite element modeling techniques applied in the effort are an appropriate compromise between required fidelity and computational effort. Static tests under tension and pressure loadings proved that the proposed repair concept is capable of sustaining load levels that are higher than those resulting from the current working stress allowables. Furthermore, the pressure repair panel was subjected to 55,000 pressure load cycles to verify that the design can withstand a life cycle representative for a transport category aircraft. These findings enable upward revision of the stress allowables that had been kept at an overly-conservative level due to concerns associated with repairability of the panels. This conclusion enables more weight efficient structural designs utilizing the composite concept under investigation.
    Keywords: Structural Mechanics
    Type: NF1676L-17009 , SAMPE TECH 2014; Jun 02, 2014 - Jun 05, 2014; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Structural Mechanics
    Type: JSC-CN-31513 , NASA In Space Inspection Workshop (ISIW) 2014; Jul 15, 2014 - Jul 16, 2014; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Four honeycomb sandwich panels, representing 1/16th arc segments of a 10-m diameter barrel section of the Heavy Lift Launch Vehicle, were manufactured and tested under the NASA Composites for Exploration and the NASA Constellation Ares V programs. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.0 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: in-autoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3 ft. by 5 ft. panels were cut from the 1/16th barrel sections and tested under compressive loading. Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of each 3 ft. by 5 ft. panel. To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yielded good qualitative and quantitative predictions. Additionally, it was correctly predicted that the panel would fail in buckling prior to failing in strength. Furthermore, several imperfection studies were performed to investigate the influence of geometric imperfections, fiber angle misalignments, and three-dimensional effects on the compressive response of the panel.
    Keywords: Structural Mechanics
    Type: GRC-E-DAA-TN12569 , AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; Jan 13, 2014 - Jan 19, 2014; National Harbor, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-13
    Description: Composite honeycomb structures continue to be widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Pulsed thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Pulsed thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are presented. In addition, limitations to the thermal detection of the core are investigated. Other NDE techniques, such as computed tomography X-ray and ultrasound, are used for comparison to the thermography results.
    Keywords: Structural Mechanics
    Type: NF1676L-18758 , SPIE (DSS 2014 ) Defense and Security Symposium; May 06, 2014 - May 09, 2014; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-12
    Description: To eliminate the need to use finite-element modeling for structure shape predictions, a new method was invented. This method is to use the Displacement Transfer Functions to transform the measured surface strains into deflections for mapping out overall structural deformed shapes. The Displacement Transfer Functions are expressed in terms of rectilinearly distributed surface strains, and contain no material properties. This report is to apply the patented method to the shape predictions of non-symmetrically loaded slender curved structures with different curvatures up to a full circle. Because the measured surface strains are not available, finite-element analysis had to be used to analytically generate the surface strains. Previously formulated straight-beam Displacement Transfer Functions were modified by introducing the curvature-effect correction terms. Through single-point or dual-point collocations with finite-elementgenerated deflection curves, functional forms of the curvature-effect correction terms were empirically established. The resulting modified Displacement Transfer Functions can then provide quite accurate shape predictions. Also, the uniform straight-beam Displacement Transfer Function was applied to the shape predictions of a section-cut of a generic capsule (GC) outer curved sandwich wall. The resulting GC shape predictions are quite accurate in partial regions where the radius of curvature does not change sharply.
    Keywords: Structural Mechanics
    Type: NASA/TM-2014-216660 , AFRC-E-DAA-TN13627
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-12
    Description: A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.
    Keywords: Structural Mechanics
    Type: NASA/TM-2014-218265 , L-20410 , NF1676L-18832
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Structural Mechanics
    Type: JSC-CN-30752
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-12
    Description: The NASA Langley Research Center is acquiring a state-of-art composites fabrication capability to support the Center's advanced research and technology mission. The system introduced in this paper is named ISAAC (Integrated Structural Assembly of Advanced Composites). The initial operational capability of ISAAC is automated fiber placement, built around a commercial system from Electroimpact, Inc. that consists of a multi-degree of freedom robot platform, a tool changer mechanism, and a purpose-built fiber placement end effector. Examples are presented of the advanced materials, structures, structural concepts, fabrication processes and technology development that may be enabled using the ISAAC system. The fiber placement end effector may be used directly or with appropriate modifications for these studies, or other end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.
    Keywords: Structural Mechanics
    Type: NF1676L-18562
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-28
    Description: An eddy current probe includes an excitation coil for coupling to a low-frequency alternating current (AC) source. A magneto-resistive sensor is centrally disposed within and at one end of the excitation coil to thereby define a sensing end of the probe. A tubular flux-focusing lens is disposed between the excitation coil and the magneto-resistive sensor. An excitation wire is spaced apart from the magneto-resistive sensor in a plane that is perpendicular to the sensor's axis of sensitivity and such that, when the sensing end of the eddy current probe is positioned adjacent to the surface of a structure, the excitation wire is disposed between the magneto-resistive sensor and the surface of the structure. The excitation wire is coupled to a high-frequency AC source. The excitation coil and flux-focusing lens can be omitted when only surface inspection is required.
    Keywords: Structural Mechanics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-08-28
    Description: A first material with a known maximum temperature of operation is coated with a second material on at least one surface of the first material. The coating has a melting temperature that is greater than the maximum temperature of operation of the first material. The coating is heated to its melting temperature until the coating flows into any cracks in the first material's surface.
    Keywords: Structural Mechanics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.
    Keywords: Structural Mechanics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-12
    Description: Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.
    Keywords: Structural Mechanics
    Type: NASA/TM-2014-218176 , L-20320 , NF1676L-17349
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-12
    Description: NASALIFE is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although the primary focus was for CMC components, the underlying methodologies are equally applicable to other material systems as well. The program references empirical data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method or a peak counting type method. Lastly, damage due to cyclic loading and creep is combined with Minor's Rule to determine damage due to cyclic loading, damage due to creep, and the total damage per mission and the number of potential missions the component can provide before failure.
    Keywords: Structural Mechanics
    Type: NASA/TM-2005-213886/REV2 , E-15257-2 , GRC-E-DAA-TN14266
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: In this paper, genetic algorithm based and gradient-based topology optimization is presented in application to a real hardware design problem. Preliminary design of a planetary lander mockup structure is accomplished using these methods that prove to provide major weight savings by addressing the structural efficiency during the design cycle. This paper presents two alternative formulations of the topology optimization problem. The first is the widely-used gradient-based implementation using commercially available algorithms. The second is formulated using genetic algorithms and internally developed capabilities. These two approaches are applied to a practical design problem for hardware that has been built, tested and proven to be functional. Both formulations converged on similar solutions and therefore were proven to be equally valid implementations of the process. This paper discusses both of these formulations at a high level.
    Keywords: Structural Mechanics
    Type: M13-3070 , AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference; Jun 16, 2014 - Jun 20, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: The structural performance of two advanced composite tow-steered shells with cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The shells' fiber orientation angles vary continuously around their circumference from +/-10 degrees on the crown and keel, to +/-45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the system's tow drop/add capability to achieve a more uniform wall thickness. These unstiffened shells were previously tested in axial compression and buckled elastically. A single cutout, scaled to represent a passenger door on a commercial aircraft, is then machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of the shells with cutouts are also computed using linear finite element structural analyses for initial comparisons with test data. When retested, large deflections were observed around the cutouts, but the shells carried an average of 92 percent of the axial stiffness, and 86 percent of the buckling loads, of the shells without cutouts. These relatively small reductions in performance demonstrate the potential for using tow steering to mitigate the adverse effects of typical design features on the overall structural performance.
    Keywords: Structural Mechanics
    Type: AIAA Paper-2014-1056 , NF1676L-16522 , AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; Jan 13, 2014 - Jan 17, 2014; National Harbor, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: It is common practice to assume a Gaussian distribution of both the input acceleration and the response when modeling random vibration tests. In the laboratory, however, shaker controllers often limit the drive signal to prevent high amplitude peaks. The high amplitudes may either be truncated at a given level (socalled brick wall limiting or abrupt clipping), or compressed (soft limiting), resulting in drive signals which are no longer Gaussian. The paper first introduces several methods for limiting a drive signal, including brick wall limiting and compression. The limited signal is then passed through a linear time-invariant system representing a device under test. High cycle fatigue life predictions are subsequently made using spectral fatigue and rainflow cycle counting schemes. The life predictions are compared with those obtained from unclipped input signals. Some guidelines are provided to help the test engineer decide how clipping should be applied under different test scenarios.
    Keywords: Structural Mechanics
    Type: NF1676L-16304 , International Conference on Vibration and Vibro-acoustics; Jan 13, 2014 - Jan 15, 2014; Harbin; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: Results from recent National Aeronautics and Space Administration (NASA) research on the structural dynamics and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment, and results from small-scale in vacuo dynamics experiments with spinning high-aspect ratio membranes. A low-cost, rideshare payload heliogyro technology demonstration mission concept, used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, is also described.
    Keywords: Structural Mechanics
    Type: NF1676L-17902 , European Conference on Spacecraft Structures, Materials and Environmental Testing; Apr 01, 2014 - Apr 04, 2014; Brunswick; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Structural Mechanics
    Type: JSC-CN-31004 , Greater Houston Industrial Hygiene Council meeting; Apr 17, 2014; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: This paper describes the results of a research program conducted to improve the understanding of fatigue crack growth rate behavior in the threshold growth rate region and to answer a question on the validity of threshold region test data. The validity question relates to the view held by some experimentalists that using the ASTM load shedding test method does not produce valid threshold test results and material properties. The question involves the fanning behavior observed in threshold region of da/dN plots for some materials in which the low R-ratio data fans out from the high R-ratio data. This fanning behavior or elevation of threshold values in the low R-ratio tests is generally assumed to be caused by an increase in crack closure in the low R-ratio tests. Also, the increase in crack closure is assumed by some experimentalists to result from using the ASTM load shedding test procedure. The belief is that this procedure induces load history effects which cause remote closure from plasticity and/or roughness changes in the surface morphology. However, experimental studies performed by the authors have shown that the increase in crack closure is a result of extensive crack tip bifurcations that can occur in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the fanning behavior which occurs in aluminum alloys is a function of intrinsic dislocation property of the alloy, and therefore, the fanned data does represent the true threshold properties of the material. However, for the corrosion sensitive steel alloys tested in laboratory air, the occurrence of fanning results from fretting corrosion at the crack tips, and these results should not be considered to be representative of valid threshold properties because the fanning is eliminated when testing is performed in dry air.
    Keywords: Structural Mechanics
    Type: JSC-CN-29595 , International Fatigue Congress 2014; Mar 02, 2014 - Mar 07, 2014; Melbourne; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: Small modeling errors in a finite-element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the X-56A Multi-Utility Technology Testbed aircraft is the flight demonstration of active flutter suppression and, therefore, in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground-vibration test-validated structural dynamic finite-element model of the X-56A aircraft is created in this study. The structural dynamic finite-element model of the X-56A aircraft is improved using a model-tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, whereas other properties such as c.g. location, total weight, and off-diagonal terms of the mass orthogonality matrix were used as constraints. The end result was an improved structural dynamic finite-element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.
    Keywords: Structural Mechanics
    Type: AIAA Paper 2014-3157 , DFRC-E-DAA-TN19516 , AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference; Jun 16, 2014 - Jun 20, 2014; Atlanta, GA; United States|AIAA Journal of Aircraft; 52; 5; 1644-1667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: Asimple, nonstandardized material test specimen,which fails along one of two different likely crack paths, is considered herein.The result of deviations in geometry on the order of tenths of amillimeter, this ambiguity in crack pathmotivates the consideration of asmanufactured component geometry in the design, assessment, and certification of structural systems.Herein, finite elementmodels of as-manufactured specimens are generated and subsequently analyzed to resolve the crack-path ambiguity. The consequence and benefit of such a "personalized" methodology is the prediction of a crack path for each specimen based on its as-manufactured geometry, rather than a distribution of possible specimen geometries or nominal geometry.The consideration of as-manufactured characteristics is central to the Digital Twin concept. Therefore, this work is also intended to motivate its development.
    Keywords: Structural Mechanics
    Type: NF1676L-18452 , International Journal of Aerospace Engineering; 2014; 439278
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-12
    Description: This research investigates the advantages of using curvilinear spars and ribs, termed SpaRibs, to design a supersonic aircraft wing-box in comparison to the use of classic design concepts that employ straight spars and ribs. The objective is to achieve a more efficient load-bearing mechanism and to passively control the deformation of the structure under the flight loads. Moreover, the use of SpaRibs broadens the design space and allows for natural frequencies and natural mode shape tailoring. The SpaRibs concept is implemented in a new optimization MATLAB-based framework referred to as EBF3SSWingOpt. This optimization scheme performs both the sizing and the shaping of the internal structural elements, connecting the optimizer with the analysis software. The shape of the SpaRibs is parametrically defined using the so called Linked Shape method. Each set of SpaRibs is placed in a one by one square domain of the natural space. The set of curves is subsequently transformed in the physical space for creating the wing structure geometry layout. The shape of each curve of each set is unique; however, mathematical relations link the curvature in an effort to reduce the number of design variables. The internal structure of a High Speed Commercial Transport aircraft concept developed by Boeing is optimized subjected to stress, subsonic flutter and supersonic flutter constraints. The results show that the use of the SpaRibs allows for the reduction of the aircraft's primary structure weight without violating the constraints. A weight reduction of about 15 percent is observed.
    Keywords: Structural Mechanics
    Type: NASA/CR-2014-218537 , NF1676L-18598
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-12
    Description: In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This document contains the appendices to the main report.
    Keywords: Structural Mechanics
    Type: NASA/TM-2014-218505/VOL2 , L-20447 , NESC-RP-13-00852 , NF1676L-19379
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-12
    Description: A multi-layer antimicrobial hydrophilic coating is applied to a substrate of anodized aluminum, although other materials may form the substrate. A silver layer is sputtered onto a thoroughly clean anodized surface of the aluminum to about 400 nm thickness. A layer of crosslinked, silicon-based macromolecular structure about 10 nm thickness overlies the silver layer, and the outermost surface of the layer of crosslinked, silicon-based macromolecular structure is hydroxide terminated to produce a hydrophilic surface with a water drop contact angle of less than 10.degree.. The coated substrate may be one of multiple fins in a condensing heat exchanger for use in the microgravity of space, which has narrow channels defined between angled fins such that the surface tension of condensed water moves water by capillary flow to a central location where it is pumped to storage. The antimicrobial coating prevents obstruction of the capillary passages.
    Keywords: Structural Mechanics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-12
    Description: In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This report contains the outcome of the assessment and the findings, observations, and NESC recommendations to the Agency and individual NASA Centers.
    Keywords: Structural Mechanics
    Type: NASA/TM-2014-218505/VOL1 , L-20446 , NESC-RP-13-00852 , NF1676L-19378
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-12
    Description: A method of forming a composite structure can include providing a plurality of composite panels of material, each composite panel having a plurality of holes extending through the panel. An adhesive layer is applied to each composite panel and a adjoining layer is applied over the adhesive layer. The method also includes stitching the composite panels, adhesive layer, and adjoining layer together by passing a length of a flexible connecting element into the plurality of holes in the composite panels of material. At least the adhesive layer is cured to bond the composite panels together and thereby form the composite structure.
    Keywords: Structural Mechanics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: During the design of turbomachinery flow path components, the assessment of possible structural resonant conditions is critical. Higher frequency modes of these structures are frequently found to be subject to resonance, and in these cases, design criteria require a forced response analysis of the structure with the assumption that the excitation speed exactly equals the resonant frequency. The design becomes problematic if the response analysis shows a violation of the HCF criteria. One possible solution is to perform "finite-life" analysis, where Miner's rule is used to calculate the actual life in seconds in comparison to the required life. In this situation, it is beneficial to incorporate the fact that, for a variety of turbomachinery control reasons, the speed of the rotor does not actually dwell at a single value but instead dithers about a nominal mean speed and during the time that the excitation frequency is not equal to the resonant frequency, the damage accumulated by the structure is diminished significantly. Building on previous investigations into this process, we show that a steady-state assumption of the response is extremely accurate for this typical case, resulting in the ability to quickly account for speed variation in the finite-life analysis of a component which has previously had its peak dynamic stress at resonance calculated. A technique using Monte Carlo simulation is also presented which can be used when specific speed time histories are not available. The implementation of these techniques can prove critical for successful turbopump design, as the improvement in life when speed variation is considered is shown to be greater than a factor of two
    Keywords: Structural Mechanics
    Type: M13-2729 , ASME Turbo Expo 2013: Power for Land, Sea, and Air; Jun 04, 2014; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: This paper presents a practical application of response surface methods (RSM) to correlate a finite element model of a structural modal test. The test article is a quasicylindrical inflatable structure which primarily consists of a fabric weave, with an internal bladder and metallic bulkheads on either end. To mitigate model size, the fabric weave was simplified by representing it with shell elements. The task at hand is to represent the material behavior of the weave. The success of the model correlation is measured by comparing the four major modal frequencies of the analysis model to the four major modal frequencies of the test article. Given that only individual strap material properties were provided and material properties of the overall weave were not available, defining the material properties of the finite element model became very complex. First it was necessary to determine which material properties (modulus of elasticity in the hoop and longitudinal directions, shear modulus, Poisson's ratio, etc.) affected the modal frequencies. Then a Latin Hypercube of the parameter space was created to form an efficiently distributed finite case set. Each case was then analyzed with the results input into RSM. In the resulting response surface it was possible to see how each material parameter affected the modal frequencies of the analysis model. If the modal frequencies of the analysis model and its corresponding parameters match the test with acceptable accuracy, it can be said that the model correlation is successful.
    Keywords: Structural Mechanics
    Type: JSC-CN-28997 , SLaMS Young Professional Forum; Jul 16, 2013 - Jul 18, 2013; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT(m), where "m" stands for "mixed". Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels.
    Keywords: Structural Mechanics
    Type: NF1676L-15770 , International Conference on Computational Methods for Coupled Problems in Science and Engineering - COUPLED 2013; Jun 16, 2013 - Jun 17, 2013; Ibizza; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: The NASA Langley COmbined Loads Test System (COLTS) Facility was designed to accommodate a range of fuselage structures and wing sections and subject them to both quasistatic and cyclic loading conditions. Structural tests have been conducted in COLTS that address structural integrity issues of metallic and fiber reinforced composite aerospace structures in support of NASA Programs (i.e. the Aircraft Structural Integrity (ASIP) Program, High-Speed-Research program and the Supersonic Project, NASA Engineering and Safety Center (NESC) Composite Crew Module Project, and the Environmentally Responsible Aviation Program),. This paper presents experimental results for curved panels subjected to mechanical and internal pressure loads using a D-box test fixture. Also, results are presented that describe use of a checkout beam for development of testing procedures for a combined mechanical and pressure loading test of a Multi-bay box. The Multi-bay box test will be used to experimentally verify the structural performance of the Multi-bay box in support of the Environmentally Responsible Aviation Project at NASA Langley.
    Keywords: Structural Mechanics
    Type: NF1676L-15405 , 2013 SEM Annual Conference & Exposition on Experimental & Applied Mechanics; Jun 03, 2013 - Jun 06, 2013; Lombard, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: Physics-based models are routinely used to predict the performance of engineered systems to make decisions such as when to retire system components, how to extend the life of an aging system, or if a new design will be safe or available. Model verification and validation (V&V) is a process to establish credibility in model predictions. Ideally, carefully controlled validation experiments will be designed and performed to validate models or submodels. In reality, time and cost constraints limit experiments and even model development. This paper describes elements of model V&V during the development and application of a probabilistic fracture assessment model to predict cracking in space shuttle main engine high-pressure oxidizer turbopump knife-edge seals. The objective of this effort was to assess the probability of initiating and growing a crack to a specified failure length in specific flight units for different usage and inspection scenarios. The probabilistic fracture assessment model developed in this investigation combined a series of submodels describing the usage, temperature history, flutter tendencies, tooth stresses and numbers of cycles, fatigue cracking, nondestructive inspection, and finally the probability of failure. The analysis accounted for unit-to-unit variations in temperature, flutter limit state, flutter stress magnitude, and fatigue life properties. The investigation focused on the calculation of relative risk rather than absolute risk between the usage scenarios. Verification predictions were first performed for three units with known usage and cracking histories to establish credibility in the model predictions. Then, numerous predictions were performed for an assortment of operating units that had flown recently or that were projected for future flights. Calculations were performed using two NASA-developed software tools: NESSUS(Registered Trademark) for the probabilistic analysis, and NASGRO(Registered Trademark) for the fracture mechanics analysis. The goal of these predictions was to provide additional information to guide decisions on the potential of reusing existing and installed units prior to the new design certification.
    Keywords: Structural Mechanics
    Type: NASA/TM-2013-217849 , E-18636 , Turbo Expo 2012; Jun 11, 2012 - Jun 15, 2012; Copenhagen; Denmark
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: The ability of the Abaqus progressive Virtual Crack Closure Technique (VCCT) to model delamination in composite structures was investigated for static, postbuckling, and fatigue loads. Preliminary evaluations were performed using simple Double Cantilever Beam (DCB) and Mixed-Mode Bending (MMB) specimens. The nodal release sequences that describe the propagation of the delamination front were investigated. The effect of using a sudden or a gradual nodal release was evaluated by considering meshes aligned with the crack front as well as misaligned meshes. Fatigue simulations were then performed using the Direct Cyclic Fatigue (DCF) algorithm. It was found that in specimens such as the DCB, which are characterized by a nearly linear response and a pure fracture mode, the algorithm correctly predicts the Paris Law rate of propagation. However, the Abaqus DCF algorithm does not consider different fatigue propagation laws in different fracture modes. Finally, skin/stiffener debonding was studied in an aircraft fuselage subcomponent in which debonding occurs deep into post-buckling deformation. VCCT was shown to be a robust tool for estimating the onset propagation. However, difficulties were found with the ability of the current implementation of the Abaqus progressive VCCT to predict delamination propagation within structures subjected to postbuckling deformations or fatigue loads.
    Keywords: Structural Mechanics
    Type: NF1676L-15330 , SAMPE; May 06, 2013 - May 09, 2013; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: The structural performance of two advanced composite tow-steered shells, manufactured using a fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles vary continuously around the shell circumference from 10 degrees on the shell crown and keel, to 45 degrees on the shell sides. The two shells differ in that one shell has the full 24-tow course applied during each pass of the fiber placement system, while the second shell uses the fiber placement system s tow drop/add capability to achieve a more uniform shell wall thickness. The shells are tested in axial compression, and estimates of their prebuckling axial stiffnesses and bifurcation buckling loads are predicted using linear finite element analyses. These preliminary predictions compare well with the test results, with an average agreement of approximately 10 percent.
    Keywords: Structural Mechanics
    Type: AIAA Paper 2013-1769 , NF1676L-15206 , 54th AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics, and Materials Conference; Apr 08, 2013 - Apr 11, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: The collapse pressure of an inflatable membrane is the minimum differential pressure which will sustain a specific desired shape under an applied load. In this paper, we present a method for estimating the collapse pressure of a tension-cone inflatable aerodynamic decelerator (IAD) that is subject to a static aerodynamic load. The IAD surface is modeled as an elastic membrane. For a given aerodynamic load and sufficiently high torus differential pressure, the IAD assumes a stable axisymmetric equilibrium shape. When the torus pressure is reduced sufficiently, the symmetric equilibrium state becomes unstable and we define this instance to be the critical pressure Pcr. In this paper, we will compare our predicted critical torus pressure with the corresponding observed torus collapse pressure (OTCP) for fifteen tests that were conducted by the third author and his collaborators at the NASA Glenn Research Center 10x10 Supersonic Wind Tunnel in April 2008. One of the difficulties with these types of comparisons is establishing the instance of torus collapse and determining the OTCP from quantities measured during the experiment. In many cases, torus collapse is gradual and the OTCP is not well-defined. However, in eight of the fifteen wind tunnel tests where the OTCP is well-defined, we find that the average of the relative differences (Pcr - OTCP/Pcr) was 8.9%. For completeness, we will also discuss the seven tests where the observed torus collapse pressure is not well-defined.
    Keywords: Structural Mechanics
    Type: NF1676L-15262 , 22nd AIAA Aerodynamic Decelerator Systems Technology Conference; Mar 25, 2013 - Mar 28, 2013; Daytona Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: As part of the National Aeronautics and Space Administration's (NASA's) Environmentally Responsible Aviation (ERA) program, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) has been designed, developed and tested. However, PRSEUS development efforts to date have only addressed joints required to transfer bending moments between PRSEUS panels. Development of in-plane joints for the PRSEUS concept is necessary to facilitate in-plane transfer of load from PRSEUS panels to an adjacent structure, such as from a wing panel into a fuselage. This paper presents preliminary design and analysis of an in-plane PRSEUS joint for connecting PRSEUS panels at the termination of the rod-stiffened stringers. Design requirements are provided, the PRSEUS blade joint concept is presented, and preliminary design changes and analyses are carried out to examine the feasibility of the proposed in-plane PRSEUS blade joint. The study conducted herein focuses mainly on the PRSEUS structure on one side of the joint. In particular, the design requirements for the rod shear stress and bolt bearing stress are examined. A PRSEUS blade joint design was developed that demonstrates the feasibility of this in-plane PRSEUS joint concept to terminate the rod-stiffened stringers. The presented design only demonstrates feasibility, therefore, some areas of refinement are presented that would lead to a more optimum and realistic design.
    Keywords: Structural Mechanics
    Type: AIAA Paper 2013-1737 , NF1676L-15228 , 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; Apr 08, 2013 - Apr 11, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component s functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.
    Keywords: Structural Mechanics
    Type: JSC-CN-28635 , 6th International Association for the Advancement of Space Safety Conference(IAASS): Safety Is Not An Option; May 21, 2013 - May 23, 2013; Montreal; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: Systems health management (SHM) is an important set of technologies aimed at increasing system safety and reliability by detecting, isolating, and identifying faults; and predicting when the system reaches end of life (EOL), so that appropriate fault mitigation and recovery actions can be taken. Model-based SHM approaches typically make use of global, monolithic system models for online analysis, which results in a loss of scalability and efficiency for large-scale systems. Improvement in scalability and efficiency can be achieved by decomposing the system model into smaller local submodels and operating on these submodels instead. In this paper, the global system model is analyzed offline and structurally decomposed into local submodels. We define a common model decomposition framework for extracting submodels from the global model. This framework is then used to develop algorithms for solving model decomposition problems for the design of three separate SHM technologies, namely, estimation (which is useful for fault detection and identification), fault isolation, and EOL prediction. We solve these model decomposition problems using a three-tank system as a case study.
    Keywords: Structural Mechanics
    Type: ARC-E-DAA-TN7851 , 2013 IEEE Aerospace Conference; Mar 02, 2013 - Mar 09, 2013; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: Recent developments in fracture mechanics analyses of the interfacial crack problem are reviewed. The intent of the review is to renew the awareness of the oscillatory singularity at the crack tip of a bimaterial interface and the problems that occur when calculating mode mixity using numerical methods such as the finite element method in conjunction with the virtual crack closure technique. Established approaches to overcome the nonconvergence issue of the individual mode strain energy release rates are reviewed. In the recent literature many attempts to overcome the nonconvergence issue have been developed. Among the many approaches found only a few methods hold the promise of providing practical solutions. These are the resin interlayer method, the method that chooses the crack tip element size greater than the oscillation zone, the crack tip element method that is based on plate theory and the crack surface displacement extrapolation method. Each of the methods is validated on a very limited set of simple interface crack problems. However, their utility for a wide range of interfacial crack problems is yet to be established.
    Keywords: Structural Mechanics
    Type: AIAA Paper 2013-1476 , NF1676L-15310 , 54th AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics, and Materials Conference; Apr 08, 2013 - Apr 11, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: The Aeronautical Sciences Project under NASA`s Fundamental Aeronautics Program is extremely interested in the development of novel measurement technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Center`s High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied high-contrast random speckle pattern and imaging the pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.0-im in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be .shifted`. The resulting particle displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential speckle patterns, for future use on the rotating disk, are developed and investigated in the controlled experiment. A range of known shifts are induced on the patterns; reference and data images are acquired before and after the induced shift, respectively, and the images are processed using the cross-correlation algorithms in order to determine the particle displacements. The effectiveness of each pattern at resolving the known shift is evaluated and discussed in order to choose the most suitable pattern to be implemented onto a rotating disk in the Rotordynamics Lab. Although testing on the rotating disk has not yet been performed, the driving principles behind the development of the present optical technique are based upon critical aspects of the future experiment, such as the amount of expected radial growth, disk analysis, and experimental design and are therefore addressed in the paper.
    Keywords: Structural Mechanics
    Type: GRC-E-DAA-TN8317 , SPIE Smart Structures/NDE; Mar 09, 2013 - Mar 13, 2013; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: In this work, we present our study of Lamb wave crack detection using wavenumber analysis. The aim is to demonstrate the application of wavenumber analysis to 3D Lamb wave data to enable damage detection. The 3D wavefields (including vx, vy and vz components) in time-space domain contain a wealth of information regarding the propagating waves in a damaged plate. For crack detection, three wavenumber analysis techniques are used: (i) two dimensional Fourier transform (2D-FT) which can transform the time-space wavefield into frequency-wavenumber representation while losing the spatial information; (ii) short space 2D-FT which can obtain the frequency-wavenumber spectra at various spatial locations, resulting in a space-frequency-wavenumber representation; (iii) local wavenumber analysis which can provide the distribution of the effective wavenumbers at different locations. All of these concepts are demonstrated through a numerical simulation example of an aluminum plate with a crack. The 3D elastodynamic finite integration technique (EFIT) was used to obtain the 3D wavefields, of which the vz (out-of-plane) wave component is compared with the experimental measurement obtained from a scanning laser Doppler vibrometer (SLDV) for verification purposes. The experimental and simulated results are found to be in close agreement. The application of wavenumber analysis on 3D EFIT simulation data shows the effectiveness of the analysis for crack detection. Keywords: : Lamb wave, crack detection, wavenumber analysis, EFIT modeling
    Keywords: Structural Mechanics
    Type: NF1676L-15369 , SPIE Smart Structures/NDE; Mar 10, 2013 - Mar 14, 2013; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: This historical work couples model order reduction, damage detection, dynamic residual/mode shape expansion, and damage extent estimation to overcome the incomplete measurements problem by using an appropriate undamaged structural model. A contribution of this work is the development of a process to estimate the full dynamic residuals using the columns of a spring connectivity matrix obtained by disassembling the structural stiffness matrix. Another contribution is the extension of an eigenvector filtering procedure to produce full-order mode shapes that more closely match the measured active partition of the mode shapes using a set of modified Ritz vectors. The full dynamic residuals and full mode shapes are used as inputs to the minimum rank perturbation theory to provide an estimate of damage location and extent. The issues associated with this process are also discussed as drivers of near-term development activities to understand and improve this approach.
    Keywords: Structural Mechanics
    Type: JSC-CN-27488 , International Modal Analysis Conference 31st; Feb 11, 2013 - Feb 14, 2013; Garden Grove, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-12
    Description: Design and analysis results are reported for a panel that is a 16th arc-segment of a full 33-ft diameter cylindrical barrel section of a payload fairing structure. Six such panels could be used to construct the fairing barrel, and, as such, compression buckling testing of a 16th arc-segment panel would serve as a validation test of the buckling analyses used to design the fairing panels. In this report, linear and nonlinear buckling analyses have been performed using finite element software for 16th arc-segment panels composed of aluminum honeycomb core with graphiteepoxy composite facesheets and an alternative fiber reinforced foam (FRF) composite sandwich design. The cross sections of both concepts were sized to represent realistic Space Launch Systems (SLS) Payload Fairing panels. Based on shell-based linear buckling analyses, smaller, more manageable buckling test panel dimensions were determined such that the panel would still be expected to buckle with a circumferential (as opposed to column-like) mode with significant separation between the first and second buckling modes. More detailed nonlinear buckling analyses were then conducted for honeycomb panels of various sizes using both Abaqus and ANSYS finite element codes, and for the smaller size panel, a solid-based finite element analysis was conducted. Finally, for the smaller size FRF panel, nonlinear buckling analysis was performed wherein geometric imperfections measured from an actual manufactured FRF were included. It was found that the measured imperfection did not significantly affect the panel's predicted buckling response
    Keywords: Structural Mechanics
    Type: NASA/TM-2013-216574 , E-18766 , GRC-E-DAA-TN10081
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-12
    Description: It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal-mechanical fatigue (TMF) as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) TMF, (2) Oxidation/erosion (O/E), and (3) Other. From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L10 blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to O/E equaled that attributed to TMF. The category that contributed most to blade failure was Other. If there were no blade failures attributed to O/E and TMF, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.
    Keywords: Structural Mechanics
    Type: NASA/TP-2013-217030 , E-15972-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-12
    Description: Nondimensional linear-bifurcation buckling equations for balanced, symmetrically laminated cylinders with negligible shell-wall anisotropies and subjected to uniform axial compression loads are presented. These equations are solved exactly for the practical case of simply supported ends. Nondimensional quantities are used to characterize the buckling behavior that consist of a stiffness-weighted length-to-radius parameter, a stiffness-weighted shell-thinness parameter, a shell-wall nonhomogeneity parameter, two orthotropy parameters, and a nondimensional buckling load. Ranges for the nondimensional parameters are established that encompass a wide range of laminated-wall constructions and numerous generic plots of nondimensional buckling load versus a stiffness-weighted length-to-radius ratio are presented for various combinations of the other parameters. These plots are expected to include many practical cases of interest to designers. Additionally, these plots show how the parameter values affect the distribution and size of the festoons forming each response curve and how they affect the attenuation of each response curve to the corresponding solution for an infinitely long cylinder. To aid in preliminary design studies, approximate formulas for the nondimensional buckling load are derived, and validated against the corresponding exact solution, that give the attenuated buckling response of an infinitely long cylinder in terms of the nondimensional parameters presented herein. A relatively small number of "master curves" are identified that give a nondimensional measure of the buckling load of an infinitely long cylinder as a function of the orthotropy and wall inhomogeneity parameters. These curves reduce greatly the complexity of the design-variable space as compared to representations that use dimensional quantities as design variables. As a result of their inherent simplicity, these master curves are anticipated to be useful in the ongoing development of buckling-design technology.
    Keywords: Structural Mechanics
    Type: NASA/TM-2013-217999 , L-20250 , NF1676L-16500
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-12
    Description: Mr. Christopher Miller with the Kennedy Space Center (KSC) NASA Safety & Mission Assurance (S&MA) office requested the NASA Engineering and Safety Center's (NESC) technical support on March 15, 2012, to review and make recommendations on the structural analysis being performed for the Orbiter Atlantis static display at the KSC Visitor Center. The principal focus of the assessment was to review the engineering firm's structural analysis for lifting and aligning the orbiter and its static display configuration
    Keywords: Structural Mechanics
    Type: NASA/TM-2013-217996 , NESC-RP-12-00768 , L-20266 , L-20511 , NF1676L-16645 , NF1676L-20432
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-12
    Description: This report presents a new method for estimating operational loads (bending moments, shear loads, and torques) acting on slender aerospace structures using distributed surface strains (unidirectional strains). The surface strain-sensing stations are to be evenly distributed along each span-wise strain-sensing line. A depth-wise cross section of the structure along each strain-sensing line can then be considered as an imaginary embedded beam. The embedded beam was first evenly divided into multiple small domains with domain junctures matching the strain-sensing stations. The new method is comprised of two steps. The first step is to determine the structure stiffness (bending or torsion) using surface strains obtained from a simple bending (or torsion) loading case, for which the applied bending moment (or torque) is known. The second step is to use the strain-determined structural stiffness (bending or torsion), and a new set of surface strains induced by any other loading case to calculate the associated operational loads (bending moments, shear loads, or torques). Performance of the new method for estimating operational loads was studied in light of finite-element analyses of several example structures subjected to different loading conditions. The new method for estimating operational loads was found to be fairly accurate, and is very promising for applications to the flight load monitoring of flying vehicles with slender wings.
    Keywords: Structural Mechanics
    Type: NASA/TP-2013-216518 , DFRC-E-DAA-TN8464
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: NASA s Environmentally Responsible Aviation (ERA) Program is examining the hybrid wing body (HWB) aircraft, among others, in an effort to increase the fuel efficiency of commercial aircraft. The HWB design combines features of a flying wing with features of conventional transport aircraft, and has the advantage of simultaneously increasing both fuel efficiency and payload. Recent years have seen an increased focus on the structural performance of the HWB. The key structural challenge of a HWB airframe is the ability to create a cost and weight efficient, non-circular, pressurized shell. Conventional round fuselage sections react cabin pressure by hoop tension. However, the structural configuration of the HWB subjects the majority of the structural panels to bi-axial, in-plane loads in addition to the internal cabin pressure, which requires more thorough examination and analysis than conventional transport aircraft components having traditional and less complex load paths. To address this issue, while keeping structural weights low, extensive use of advanced composite materials is made. This report presents the test data and preliminary conclusions for a pressurized cube test article that utilizes Boeing's Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), and which is part of the building block approach used for HWB development.
    Keywords: Structural Mechanics
    Type: L-20212
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-12
    Description: No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.
    Keywords: Structural Mechanics
    Type: NASA/TP-2013-217480/SUPPL
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-12
    Description: No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.
    Keywords: Structural Mechanics
    Type: NASA/TP-2013-217480 , M-1356
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-12
    Description: State-of-the-art solar arrays for spacecraft provide on the order of 20 kW of electrical power, and they usually consist of 3J solar cells bonded to hinged rigid panels about 1 inch in thickness. This structural construction allows specific mass and packaging volumes of up to approximately 70 W/kg and 15 kW/m3 to be achieved. Significant advances in solar array structures are required for future very-high-power spacecraft (300+ kW), such as those proposed for pre-positioning heavy cargo on or near the Moon, Mars, or asteroids using solar electric propulsion. These applications will require considerable increases in both W/kg and kW/m3, and will undoubtedly require the use of flexible-substrate designs. This presentation summarizes work sponsored by NASA's Game Changing Development Program since Oct. 2011 to address the challenge of developing 300+ kW solar arrays. The work is primarily being done at NASA Langley, NASA Glenn, and two contractor teams (ATK and DSS), with technical collaboration from AFRL/Kirtland. The near-tem objective of the project is design, analysis, and testing of 30-50 kW solar array designs that are extensible to the far-term objective of 300+ kW. The work is currently focused on three designs: the MegaFlex concept by ATK, the Mega-ROSA concept by DSS, and an in-house 300-kW Government Reference Array concept. Each of these designs will be described in the presentation. Results obtained to date by the team, as well as future work plans, for the design, analysis, and testing of these large solar array structures will be summarized.
    Keywords: Structural Mechanics
    Type: NF1676L-15933
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-12
    Description: The phenomenon of crack propagation is among the predominant modes of failure in many natural and engineering structures, often leading to severe loss of structural integrity and catastrophic failure. Thus, the ability to understand and a priori simulate the evolution of this failure mode has been one of the cornerstones of applied mechanics and structural engineering and is broadly referred to as "fracture mechanics." The work reported herein focuses on extending this understanding, in the context of through-thickness crack propagation in cohesive materials, through the development of a continuum-level multiscale numerical framework, which represents cracks as displacement discontinuities across a surface of zero measure. This report presents the relevant theory, mathematical framework, numerical modeling, and experimental investigations of through-thickness crack propagation in fiber-reinforced composites using the Variational Multiscale Cohesive Method (VMCM) developed by the authors.
    Keywords: Structural Mechanics
    Type: NASA/TP-2013-217431 , E-18123
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-12
    Description: Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.
    Keywords: Structural Mechanics
    Type: NASA/CR-2013-217880 , E-18688
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-12
    Description: Thin-walled cylindrical shell structures often have buckling as the critical failure mode, and the buckling of such structures can be very sensitive to small geometric imperfections. The buckling analyses of an 8-ft-diameter, 10-ft-long honeycomb-core composite cylinder loaded in pure axial compression is discussed in this document. Two loading configurations are considered configuration 1 uses simple end conditions, and configuration 2 includes additional structure that may more closely approximate experimental loading conditions. Linear eigenvalue buckling analyses and nonlinear analyses with and without initial geometric imperfections were performed on both configurations. The initial imperfections were introduced in the shell by applying a radial load at the midlength of the cylinder to form a single inward dimple. The critical bifurcation buckling loads are predicted to be 924,190 lb and 924,020 lb for configurations 1 and 2, respectively. Nonlinear critical buckling loads of 918,750 lb and 954,900 lb were predicted for geometrically perfect configurations 1 and 2, respectively. Lower-bound critical buckling loads for configurations 1 and 2 with radial perturbations were found to be 33% and 36% lower, respectively, than the unperturbed critical loads. The inclusion of the load introduction cylinders in configuration 2 increased the maximum bending-boundary-layer rotation up to 11%.
    Keywords: Structural Mechanics
    Type: NASA/TM-2013-217967 , L-20231 , NF1676L-16129
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-12
    Description: An in-depth exposition on the nonlinear deformations of shells with "small" initial geometric imperfections, is presented without the use of tensors. First, the mathematical descriptions of an undeformed-shell reference surface, and its deformed image, are given in general nonorthogonal coordinates. The two-dimensional Green-Lagrange strains of the reference surface derived and simplified for the case of "small" strains. Linearized reference-surface strains, rotations, curvatures, and torsions are then derived and used to obtain the "small" Green-Lagrange strains in terms of linear deformation measures. Next, the geometry of the deformed shell is described mathematically and the "small" three-dimensional Green-Lagrange strains are given. The deformations of the shell and its reference surface are related by introducing a kinematic hypothesis that includes transverse shearing deformations and contains the classical Love-Kirchhoff kinematic hypothesis as a proper, explicit subset. Lastly, summaries of the essential equations are given for general nonorthogonal and orthogonal coordinates, and the basis for further simplification of the equations is discussed.
    Keywords: Structural Mechanics
    Type: NASA/TM-2013-217964 , L-20198 , NF1676L-15460
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-12
    Description: A detailed exposition on a refined nonlinear shell theory suitable for nonlinear buckling analyses of laminated-composite shell structures is presented. This shell theory includes the classical nonlinear shell theory attributed to Leonard, Sanders, Koiter, and Budiansky as an explicit proper subset. This approach is used in order to leverage the exisiting experience base and to make the theory attractive to industry. In addition, the formalism of general tensors is avoided in order to expose the details needed to fully understand and use the theory. The shell theory is based on "small" strains and "moderate" rotations, and no shell-thinness approximations are used. As a result, the strain-displacement relations are exact within the presumptions of "small" strains and "moderate" rotations. The effects of transverse-shearing deformations are included in the theory by using analyst-defined functions to describe the through-the-thickness distributions of transverse-shearing strains. Constitutive equations for laminated-composite shells are derived without using any shell-thinness approximations, and simplified forms and special cases are presented.
    Keywords: Structural Mechanics
    Type: NASA/TP-2013-218025 , L-20283 , NF1676L-16842
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-12
    Description: After propellant was loaded into the external tank (ET), the November 5, 2010 launch of Space Shuttle mission STS-133 was scrubbed due to a gaseous hydrogen leak located in a vent line near the ground umbilical and ET connection. Subsequent visual inspections identified cracks in the sprayed-on foam insulation in the forward end of the ET intertank segment, adjacent to the liquid oxygen (LOX) tank, as shown in Figure 1. These cracks necessitated repair of the foam due to debris concerns that violated launch constraints. As part of the repair process, the affected foam was removed to reveal cracks in the underlying external hat stiffeners on the intertank, as shown in Figure 2. Ultimately, five stiffeners were discovered to be cracked adjacent to the LOX tank. As the managing center for the ET Project, NASA Marshall Space Flight Center (MSFC) coordinated failure investigation and repair activities among multiple organizations, which included the ET prime contractor (Lockheed Martin Space Systems Michoud Operations), the Space Shuttle Program Office at the NASA Johnson Space Center (JSC), the NASA Kennedy Space Center (KSC), and the NASA Engineering and Safety Center (NESC). STS-133 utilized the external tank designated as ET-137. Many aspects of the investigation have been reported previously in Refs. 1-7, which focus on the root cause of the failures, the flight readiness rationale and the local analyses of the stringer failures and repair. This paper summarizes the global analyses that were conducted on ET-137 as part of the NESC effort during the investigation, which was conducted primarily to determine if the repairs that were introduced to the stringers would alter the global response of the ET. In the process of the investigation, a new STAGS tabular input capability was developed to more easily introduce the aerodynamic pressure loads using a method that could easily be extended to incorporate finite element property data such as skin and stiffener thicknesses and beam cross-sectional properties.
    Keywords: Structural Mechanics
    Type: NASA/TM-2013-217796 , L-20215 , NF1676L-15860
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-12
    Description: Four honeycomb sandwich panels, representing 1/16th arc segments of a 10-m diameter barrel section of the heavy lift launch vehicle, were manufactured under the NASA Composites for Exploration program and the NASA Space Launch Systems program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: inautoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3.00- by 5.00-ft panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center. Furthermore, linear eigenvalue and geometrically nonlinear finite element analysis was performed to predict the compressive response of the 3.00- by 5.00-ft panels. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panel composed of 8-ply, IM7/977-3 facesheets (referred to Panel A). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yield good qualitative and quantitative predictions. Additionally, it was predicted correctly that the panel would fail in buckling prior to failing in strength. Furthermore, several imperfection studies were performed to investigate the influence of geometric imperfections, fiber misalignments, and three-dimensional (3 D) effects on the compressive response of the panel.
    Keywords: Structural Mechanics
    Type: NASA/TM-2013-217822/PT1 , E-18570
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-12
    Description: The harmful properties of lunar dust, such as small size, glass composition, abnormal surface area, and coatings of imbedded nanophase iron, lead to a unique coupling of the dust with microwave radiation. This coupling can be exploited for rapid sintering of lunar soil for use as a construction material that can be formed to take on an infinite number of shapes and sizes. This work describes a system concept for building structures on the lunar surface using lunar regolith (soil). This system uses the ATHLETE (All-Terrain Hex- Limbed Extra-Terrestrial Explorer) mobility system as a positioning system with a microwave print head (similar to that of a smaller-scale 3D printer). A processing system delivers the lunar regolith to the microwave print head, where the microwave print head/chamber lays down a layer of melted regolith. An arm on the ATHLETE system positions the layer depending on the desired structure.
    Keywords: Structural Mechanics
    Type: NPO-48291 , NASA Tech Briefs, January 2013; 11-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-08-13
    Description: A Multilayer Insulation (MLI) and Broad Area Cooling (BAC) shield thermal control system shows promise for long-duration storage of cryogenic propellant. The NASA Cryogenic Propellant Storage and Transfer (CPST) project is investigating the thermal and structural performance of this tank-applied integrated system. The MLI/BAC Shield Acoustic and Thermal Test was performed to evaluate the MLI/BAC shield's structural performance by subjecting it to worst-case launch acoustic loads. Identical thermal tests using Liquid Nitrogen (LN2) were performed before and after the acoustic test. The data from these tests was compared to determine if any degradation occurred in the thermal performance of the system as a result of exposure to the acoustic loads. The thermal test series consisted of two primary components: a passive boil-off test to evaluate the MLI performance and an active cooling test to evaluate the integrated MLI/BAC shield system with chilled vapor circulating through the BAC shield tubes. The acoustic test used loads closely matching the worst-case envelope of all launch vehicles currently under consideration for CPST. Acoustic test results yielded reasonable responses for the given load. The thermal test matrix was completed prior to the acoustic test and successfully repeated after the acoustic test. Data was compared and yielded near identical results, indicating that the MLI/BAC shield configuration tested in this series is an option for structurally implementing this thermal control system concept.
    Keywords: Structural Mechanics
    Type: M13-2481 , Space Cryogenics Workshop; Jun 23, 2013 - Jun 25, 2013; Girdwood, AK; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-08-28
    Description: A truss beam comprised of a plurality of joined convex-curved rods with self-aligning adapters (SAA) adhesively attached at each end of the truss beam is disclosed. Shear web panels are attached to adjacent pairs of rods, providing buckling resistance for the truss beam. The rods are disposed adjacent to each other, centered around a common longitudinal axis, and oriented so that adjacent rod ends converge to at least one virtual convergence point on the common longitudinal axis, with the rods' curvature designed to increase prevent buckling for the truss beam. Each SAA has longitudinal bores that provide self-aligning of the rods in the SAA, the self-aligning feature enabling creation of strong adhesive bonds between each SAA and the rods. In certain embodiments of the present invention, pultruded unidirectional carbon fiber rods are coupled with carbon fiber shear web panels and metal SAA(s), resulting in a lightweight, low-cost but strong truss beam that is highly resistant to buckling.
    Keywords: Structural Mechanics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-08-28
    Description: A first material with a known maximum temperature of operation is coated with a second material on at least one surface of the first material. The coating has a melting temperature that is greater than the maximum temperature of operation of the first material. The coating is heated to its melting temperature until the coating flows into any cracks in the first material's surface.
    Keywords: Structural Mechanics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: Structural materials used in engineering applications routinely subjected to repetitive mechanical loads in multiple directions under non-isothermal conditions. Over past few decades, several multiaxial fatigue life estimation models (stress- and strain-based) developed for isothermal conditions. Historically, numerous fatigue life prediction models also developed for thermomechanical fatigue (TMF) life prediction, predominantly for uniaxial mechanical loading conditions. Realistic structural components encounter multiaxial loads and non-isothermal loading conditions, which increase potential for interaction of damage modes. A need exists for mechanical testing and development verification of life prediction models under such conditions.
    Keywords: Structural Mechanics
    Type: GRC-E-DAA-TN11855 , ASTM National Symposium on Fatigue and Fracture Mechanics; Nov 13, 2013 - Nov 15, 2013; Jacksonville, FL; United States|International ASTM/ESIS Symposium on Fatigue and Fracture; Nov 13, 2013 - Nov 15, 2013; Jacksonville, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: A design and analysis of a repair concept applicable to a stiffened composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure was recently completed. The damage scenario considered was a midbay-to-midbay saw-cut with a severed stiffener, flange and skin. Advanced modeling techniques such as mesh-independent definition of compliant fasteners and elastic-plastic material properties for metal parts were utilized in the finite element analysis supporting the design effort. A bolted metallic repair was selected so that it could be easily applied in the operational environment. The present work describes results obtained from a tension panel test conducted to validate both the repair concept and finite element analysis techniques used in the design effort. The test proved that the proposed repair concept is capable of sustaining load levels that are higher than those resulting from the current working stress allowables. This conclusion enables upward revision of the stress allowables that had been kept at an overly-conservative level due to concerns associated with repairability of the panels. Correlation of test data with finite element analysis results is also presented and assessed.
    Keywords: Structural Mechanics
    Type: AIAA Paper 2013-1735 , NF1676L-15210 , 54th AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics, and Materials Conference; Apr 08, 2013 - Apr 11, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: The marked increase in the use of composite and sandwich material systems in aerospace, civil, and marine structures leads to the need for integrated Structural Health Management systems. A key capability to enable such systems is the real-time reconstruction of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-location strain measurements. This technology is commonly referred to as shape- and stress-sensing. Presented herein is a computationally efficient shape- and stress-sensing methodology that is ideally suited for applications to laminated composite and sandwich structures. The new approach employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-node inverse plate finite element is formulated. The element formulation enables robust and efficient modeling of plate structures instrumented with strain sensors that have arbitrary positions. The methodology leads to a set of linear algebraic equations that are solved efficiently for the unknown nodal displacements. These displacements are then used at the finite element level to compute full-field strains, stresses, and failure criteria that are in turn used to assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demonstrate the unique capability of this new formulation for shape- and stress-sensing.
    Keywords: Structural Mechanics
    Type: NF1676L-15769 , International Conference on Computational Methods for Coupled Problems in Science and Engineering - COUPLED 2013; Jun 17, 2013 - Jun 19, 2013; Ibizza; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-08-27
    Description: A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.
    Keywords: Structural Mechanics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: This study aims to bridge the gap between classical understanding of transverse cracking in cross-ply laminates and recent computational methods for the modeling of progressive laminate failure. Specifically, the study investigates under what conditions a finite element model with cohesive X-FEM cracks can reproduce the in situ effect for the ply strength. It is shown that it is possible to do so with a single element across the thickness of the ply, provided that the interface stiffness is properly selected. The optimal value for this interface stiffness is derived with an analytical shear lag model. It is also shown that, when the appropriate statistical variation of properties has been applied, models with a single element through the thickness of a ply can predict the density of transverse matrix cracks
    Keywords: Structural Mechanics
    Type: NF1676L-15901 , International Journal of Solids and Structures; 50; 20-21; 3308-3318
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: During the design of turbomachinery flow path components, the assessment of possible structural resonant conditions is critical. Higher frequency modes of these structures are frequently found to be subject to resonance, and in these cases, design criteria require a forced response analysis of the structure with the assumption that the excitation speed exactly equals the resonant frequency. The design becomes problematic if the response analysis shows a violation of the HCF criteria. One possible solution is to perform "finite-life" analysis, where Miner's rule is used to calculate the actual life in seconds in comparison to the required life. In this situation, it is beneficial to incorporate the fact that, for a variety of turbomachinery control reasons, the speed of the rotor does not actually dwell at a single value but instead dithers about a nominal mean speed and during the time that the excitation frequency is not equal to the resonant frequency, the damage accumulated by the structure is diminished significantly. Building on previous investigations into this process, we show that a steady-state assumption of the response is extremely accurate for this typical case, resulting in the ability to quickly account for speed variation in the finite-life analysis of a component which has previously had its peak dynamic stress at resonance calculated. A technique using Monte Carlo simulation is also presented which can be used when specific speed time histories are not available. The implementation of these techniques can prove critical for successful turbopump design, as the improvement in life when speed variation is considered is shown to be greater than a factor of two.
    Keywords: Structural Mechanics
    Type: GT2013-94890 , ASME Turbo Expo 2013: Power for Land, Sea, and Air (GT 2013); Jun 03, 2013 - Jun 07, 2013; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: The international Low Impact Docking System (iLIDS) provides a structural arrangement that allows for visiting vehicles to dock with the International Space Station (ISS) (Fig 1). The iLIDS docking units are mechanically joined together by a series of active and passive latch hooks. In order to preserve docking capability at the existing Russian docking interfaces, the iLIDS latch hooks are required to conform to the existing Russian design. The latch hooks are classified as being fail-safe. Since the latch hooks are fail-safe, the hooks are not fracture critical and a fatigue based service life assessment will satisfy the structural integrity requirements. Constant amplitude fatigue testing to failure on four sets of active/passive iLIDS latch hooks was performed at load magnitudes of 10, 11, and 12 kips. Failure analysis of the hook fatigue failures identified multi-site fatigue initiation that was effectively centered about the hook mid-plane (consistent with the 3D model results). The fatigue crack initiation distribution implies that the fatigue damage accumulation effectively results in a very low aspect ratio surface crack (which can be simulated as thru-thickness crack). Fatigue damage progression resulted in numerous close proximity fatigue crack initiation sites. It was not possible to determine if fatigue crack coalescence occurs during cyclic loading or as result of the fast fracture response. The presence of multiple fatigue crack initiation sites on different planes will result in the formation of ratchet marks as the cracks coalesce. Once the stable fatigue crack becomes unstable and the fast fracture advances across the remaining ligament and the plane stress condition at a free-surface will result in failure along a 45 deg. shear plane (slant fracture) and the resulting inclined edge is called a shear lip. The hook thickness on the plane of fatigue crack initiation is 0.787". The distance between the shear lips on this plane was on the order of 0.48" and it was effectively centered about the mid-plane of the section. The numerous ratchet marks between the shear lips on the fracture initiation plane are indicative of multiple fatigue initiation sites within this region. The distribution of the fatigue damage about the centerline of the hook is consistent with the analytical results that demonstrate peak stress/strain response at the mid-plane that decreases in the direction of the hook outer surfaces. Scanning electron microscope images of the failed sections detected fatigue crack striations in close proximity to the free surface of the hook radius. These findings were documented at three locations on the fracture surface : 1) adjacent to the left shear lip, 2) adjacent to the right shear lip, and 3) near the centerline of the section. The features of the titanium fracture surface did not allow for a determination of a critical crack size via identification of the region where the fatigue crack propagation became unstable. The fracture based service life projections where benchmarked with strain-life analyses. The strainrange response in the hook radius was defined via the correlated finite element models and the modified method of universal slopes was incorporated to define the strain-life equation for the titanium alloy. The strain-life assessment confirmed that the fracture based projections were reasonable for the loading range of interest. Based upon the analysis and component level fatigue test data a preliminary service life capability for the iLIDS active and passive hooks of 2 lifetimes is projected (includes a scatter factor of 4).
    Keywords: Structural Mechanics
    Type: JSC-CN-29202 , Microscopy and Microanalysis 2013; Aug 04, 2013 - Aug 08, 2013; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: Ceramic Matrix Composites (CMCs) have been proposed for hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a C/C and a C/C-SiC material system fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for HIFiRE 8, a joint Australia / AFRL hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kPa. Flat panels of the DLR C/C and the C/C-SiC were tested in the NASA Langley Direct Connect Rig (DCR) at Mach 5 and Mach 6 enthalpy for several minutes. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used in some of the tests to increase the surface temperature of the C/C-SiC panel for approximately 350degF. The final C/C-SiC panel was tested for 3 cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.
    Keywords: Structural Mechanics
    Type: NF1676L-16481 , European Workshop on Thermal Protection Systems and Hot Structures; Apr 08, 2013 - Apr 10, 2013; Noordwijk; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: High cycle fatigue of metals typically occurs through long term exposure to time varying loads which, although modest in amplitude, give rise to microscopic cracks that can ultimately propagate to failure. The fatigue life of a component is primarily dependent on the stress amplitude response at critical failure locations. For most vibration tests, it is common to assume a Gaussian distribution of both the input acceleration and stress response. In real life, however, it is common to experience non-Gaussian acceleration input, and this can cause the response to be non-Gaussian. Examples of non-Gaussian loads include road irregularities such as potholes in the automotive world or turbulent boundary layer pressure fluctuations for the aerospace sector or more generally wind, wave or high amplitude acoustic loads. The paper first reviews some of the methods used to generate non-Gaussian excitation signals with a given power spectral density and kurtosis. The kurtosis of the response is examined once the signal is passed through a linear time invariant system. Finally an algorithm is presented that determines the output kurtosis based upon the input kurtosis, the input power spectral density and the frequency response function of the system. The algorithm is validated using numerical simulations. Direct applications of these results include improved fatigue life estimations and a method to accelerate shaker tests by generating high kurtosis, non-Gaussian drive signals.
    Keywords: Structural Mechanics
    Type: NF1676L-15395 , International Conference on Recent Advances in Structural Dynamics (RASD 2013); Jul 01, 2013 - Jul 03, 2013; Pisa; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-08-26
    Description: Under Space Act Agreement 1347 between NASA and Technova Corporation, Technova designed and fabricated two carbon-epoxy crippling specimens and NASA loaded them to failure in axial compression. Each specimen contained a pultruded rod stiffener which was held to the specimen skin with through-the-thickness stitches. One of these specimens was designed to be nominally the same as pultruded rod stitched specimens fabricated by Boeing under previous programs. In the other specimen, the rod was prestressed in a Technova manufacturing process to increase its ability to carrying compressive loading. Experimental results demonstrated that the specimen without prestressing carried approximately the same load as the similar Boeing specimens and that the specimen with prestressing carried significantly more load than the specimen without prestressing.
    Keywords: Structural Mechanics
    Type: NASA/TM-2013-218049 , L-20331 , NF1676L-17471
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: A comprehensive review of the available methods for estimating fatigue damage from variable amplitude loading is presented. The dependence of fatigue damage accumulation on power spectral density (psd) is investigated for random processes relevant to real structures such as in offshore or aerospace applications. Beginning with the Rayleigh (or narrow band) approximation, attempts at improved approximations or corrections to the Rayleigh approximation are examined by comparison to rainflow analysis of time histories simulated from psd functions representative of simple theoretical and real world applications. Spectral methods investigated include corrections by Wirsching and Light, Ortiz and Chen, the Dirlik formula, and the Single-Moment method, among other more recent proposed methods. Good agreement is obtained between the spectral methods and the time-domain rainflow identification for most cases, with some limitations. Guidelines are given for using the several spectral methods to increase confidence in the damage estimate.
    Keywords: Structural Mechanics
    Type: NF1676L-19432 , International Conference on Material and Component Performance under Variable Amplitude Loading (VAL2015); Mar 23, 2015 - Mar 26, 2015; Prague; Czechoslovakia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The following conventional force limiting methods currently practiced in deriving force limiting specifications assume one-dimensional translation source and load apparent masses: Simple TDOF model; Semi-empirical force limits; Apparent mass, etc.; Impedance method. Uncorrelated motion of the mounting points for components mounted on panels and correlated, but out-of-phase, motions of the support structures are important and should be considered in deriving force limiting specifications. In this presentation "rock-n-roll" motions of the components supported by panels, which leads to a more realistic force limiting specifications are discussed.
    Keywords: Structural Mechanics
    Type: Spacecraft and Launch Vehicle Dynamic Environments Workshop; Jun 04, 2013 - Jun 06, 2013; El Segundo, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Structural Mechanics
    Type: Spacecraft and Launch Vehicle Dynamic Environments Workshop; Jun 04, 2013 - Jun 06, 2013; El Segundo, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.
    Keywords: Structural Mechanics
    Type: Spacecraft and Launch Vehicle Dynamic Environments Workshop; Jun 04, 2013 - Jun 06, 2013; El Segundo, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: The Descent Stage Propulsion System (DSPS) is the most challenging and complex propulsion system ever built at JPL. Performance requirements, such as the entry Reaction Control System (RCS) requirements, and the terminal descent requirements (3300 N maximum thrust and approximately 835,000 N-s total impulse in less than a minute), required a large amount of propellant and a large number of components for a spacecraft that had to fit in a 4.5 meter aeroshell. The size and shape of the aeroshell, along with the envelope of the stowed rover, limited the configuration options for the Descent Stage structure. The configuration and mass constraints of the Descent Stage structure, along with performance requirements, drove the configuration of the DSPS. This paper will examine some of the challenges encountered and solutions developed during the fabrication, assembly, and test of the DSPS.
    Keywords: Structural Mechanics
    Type: AAS 13-461 , AAS/AIAA Spaceflight Mechanics Meeting; Feb 10, 2013 - Feb 14, 2013; Kauai, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-04-10
    Description: The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.
    Keywords: Structural Mechanics
    Type: E-18194-1 , 27th Space Simulatoin Conference; 5-8 Nov. 2012; Annapolis, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Structural Mechanics
    Type: NASA Fault Management Workshop; Apr 10, 2012 - Apr 12, 2012; New Orleans, LA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: Following the launch scrub of Space Shuttle mission STS-133 on November 5, 2010, an anomalous condition of cracked and raised thermal protection system (TPS) foam was observed on the External Tank (ET). Subsequent dissection of the affected TPS region revealed cracks in the feet of two Intertank (IT) metallic stringers. An extensive investigation into the cause(s) and corrective action(s) for the cracked stringers was initiated, involving a wide array of material and structural tests and nondestructive evaluations, with the intent to culminate into the development of flight rational. One such structural test was the instrumented tanking test performed on December 17, 2010. The tanking test incorporated two three-dimensional optical displacement measurement systems to measure full-field outer surface displacements of the TPS surrounding the affected region that contained the stringer cracks. The results showed that the radial displacement and rotation of the liquid oxygen (LO2) tank flange changed significantly as the fluid level of the LO2 approached and passed the LO2 tank flange.
    Keywords: Structural Mechanics
    Type: M11-0925 , M12-1660 , 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: In the two decades since Iijima's report on carbon nanotubes (CNT), there has been great interest in realizing the benefits of mechanical properties observed at the nanoscale in large-scale structures. The weight savings possible due to dramatic improvements in mechanical properties relative to state-of-the-art material systems can be game changing for applications like aerospace vehicles. While there has been significant progress in commercial production of CNTs, major aerospace applications that take advantage of properties offered by this material have yet to be realized. This paper provides a perspective on the technical challenges and barriers for insertion of CNTs as an emerging material technology in aerospace applications and proposes approaches that may reduce the typical timeframe for technology maturation and insertion into aerospace structures.
    Keywords: Structural Mechanics
    Type: NF1676L-13796 , ECCM15-15th European Conference on Composite Materials; Jun 24, 2012 - Jun 28, 2012; Venice; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007 to 2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cubic feet in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their T-junctions connecting the 12 in. supply line to their respective 4 in. branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed T-junction connections through non-destructive evaluation testing. Through structural dynamic modeling of the piping system, the root cause of the T-junction connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.
    Keywords: Structural Mechanics
    Type: NASA/TM-2012-217610 , E-18194 , 27th Aerospace Testing Seminar (ATS); Oct 16, 2012 - Oct 18, 2012; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: On November 5, 2010, a significant foam liberation threat was observed as the Space Shuttle STS-133 launch effort was scrubbed because of a hydrogen leak at the ground umbilical carrier plate. Further investigation revealed the presence of multiple cracks at the tops of stringers in the intertank region of the Space Shuttle External Tank. As part of an instrumented tanking test conducted on December 17, 2010, a three dimensional digital image correlation photogrammetry system was used to measure radial deflections and overall deformations of a section of the intertank region. This paper will describe the experimental challenges that were overcome in order to implement the photogrammetry measurements for the tanking test in support of STS-133. The technique consisted of configuring and installing two pairs of custom stereo camera bars containing calibrated cameras on the 215-ft level of the fixed service structure of Launch Pad 39-A. The cameras were remotely operated from the Launch Control Center 3.5 miles away during the 8 hour duration test, which began before sunrise and lasted through sunset. The complete deformation time history was successfully computed from the acquired images and would prove to play a crucial role in the computer modeling validation efforts supporting the successful completion of the root cause analysis of the cracked stringer problem by the Space Shuttle Program. The resulting data generated included full field fringe plots, data extraction time history analysis, section line spatial analyses and differential stringer peak ]valley motion. Some of the sample results are included with discussion. The resulting data showed that new stringer crack formation did not occur for the panel examined, and that large amounts of displacement in the external tank occurred because of the loads derived from its filling. The measurements acquired were also used to validate computer modeling efforts completed by NASA Marshall Space Flight Center (MSFC).
    Keywords: Structural Mechanics
    Type: NF1676L-13755 , SEM XII International Congress and Exposition on Experimental and Applied Mechanics; Jun 11, 2012 - Jun 14, 2012; Costa Mesa, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: Shell-buckling knockdown factors (SBKF) have been used in large cylindrical shell structures to account for uncertainty in buckling loads. As the diameter of the cylinder increases, achieving the manufacturing tolerances becomes increasingly more difficult. Knockdown factors account for manufacturing imperfections in the shell geometry by decreasing the allowable buckling load of the cylinder. In this paper, large-diameter (33 ft) cylinders are investigated by using various SBKF's. An investigation that is based on finite-element analysis (FEA) is used to develop design sensitivity relationships. Different manufacturing imperfections are modeled into a perfect cylinder to investigate the effects of these imperfections on buckling. The analysis results may be applicable to large- diameter rockets, cylindrical tower structures, bulk storage tanks, and silos.
    Keywords: Structural Mechanics
    Type: AIAA Paper-2012-1605 , NF1676L-14621 , 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: Results from a numerical study of the buckling response of a thin-walled compressionloaded isotropic circular cylindrical shell with initial geometric and loading imperfections are used to determine a lower bound buckling load estimate suitable for preliminary design. The lower bound prediction techniques presented herein include an imperfection caused by a lateral perturbation load, an imperfection in the shape of a single stress-free dimple (similar to the lateral pertubation imperfection), and a distributed load imperfection that induces a nonuniform load in the shell. The ABAQUS finite element code is used for the analyses. Responses of the cylinders for selected imperfection amplitudes and imperfection types are considered, and the effect of each imperfection is compared to the response of a geometrically perfect cylinder. The results indicate that compression-loaded shells subjected to a lateral perturbation load or a single dimple imperfection, and a nonuniform load imperfection, exhibit similar buckling behavior and lower bound trends and the predicted lower bounds are much less conservative than the corresponding design recommendation NASA SP-8007 for the design of buckling-critical shells. In addition, the lateral perturbation technique and the distributed load imperfection produce response characteristics that are physically meaningful and can be validated via laboratory testing.
    Keywords: Structural Mechanics
    Type: AIAA Paper 2012-1864 , NF1676L-14352 , 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: The development of validated multidisciplinary Integrated Vehicle Health Management (IVHM) tools, technologies, and techniques to enable detection, diagnosis, prognosis, and mitigation in the presence of adverse conditions during flight will provide effective solutions to deal with safety related challenges facing next generation aircraft. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and damage conditions. A major concern in these structures is the growth of undetected damage (cracks) due to fatigue and low velocity foreign impacts that can reach a critical size during flight, resulting in loss of control of the aircraft. Hence, development of efficient methodologies to determine the presence, location, and severity of damage in critical structural components is highly important in developing efficient structural health management systems.
    Keywords: Structural Mechanics
    Type: AIAA Paper 2012-1361 , NF1676L-13373 , 13th AIAA Gossamer Systems Forum; Apr 23, 2012 - Apr 16, 2012; Honolulu, HI; United States|14th AIAA Non-Deterministic Approaches Conference; Apr 23, 2012 - Apr 16, 2012; Honolulu, HI; United States|53rd Structures, Structural Dynamics, and Materials Conference (SDM); Apr 23, 2012 - Apr 16, 2012; Honolulu, HI; United States|20th AIAA/ASME/AHS Adaptive Structures Conference; Apr 23, 2012 - Apr 16, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.
    Keywords: Structural Mechanics
    Type: AIAA Paper 2012-1726 , NF1676L-13294 , 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference - Special Sessions on Nanostructured Materials; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: Future generations of NASA and U.S. Air Force vehicles will require lighter mass while being subjected to higher loads and more extreme service conditions over longer time periods than the present generation. Current approaches for certification, fleet management and sustainment are largely based on statistical distributions of material properties, heuristic design philosophies, physical testing and assumed similitude between testing and operational conditions and will likely be unable to address these extreme requirements. To address the shortcomings of conventional approaches, a fundamental paradigm shift is needed. This paradigm shift, the Digital Twin, integrates ultra-high fidelity simulation with the vehicle s on-board integrated vehicle health management system, maintenance history and all available historical and fleet data to mirror the life of its flying twin and enable unprecedented levels of safety and reliability.
    Keywords: Structural Mechanics
    Type: AIAA Paper 2012-1818 , NF1676L-13293 , 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference - Special Session on the Digital Twin; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. The concept is a bolted repair using metal components, so that it can easily be applied in the operational environment. The damage scenario considered is a midbay-to-midbay saw-cut with a severed stiffener, flange and skin. In a previous study several repair configurations were explored and their feasibility confirmed but refinement was needed. The present study revisits the problem under recently revised design requirements and broadens the suite of loading conditions considered. The repair assembly design is based on the critical tension loading condition and subsequently its robustness is verified for a pressure loading case. High fidelity modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic material properties for metal parts and geometrically nonlinear solutions are utilized in the finite element analysis. The best repair design is introduced, its analysis results are presented and factors influencing the design are assessed and discussed.
    Keywords: Structural Mechanics
    Type: AIAA Paper 2012-1444 , NF1676L-13170 , 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: NASA s Shell Buckling Knockdown Factor (SBKF) Project was established in the spring of 2007 by the NASA Engineering and Safety Center (NESC) in collaboration with the Constellation Program and Exploration Systems Mission Directorate. The SBKF project has the current goal of developing less-conservative, robust shell buckling design factors (a.k.a. knockdown factors) and design and analysis technologies for light-weight stiffened metallic launch vehicle (LV) structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles and can help mitigate some of NASA s LV development and performance risks. In particular, it is expected that the results from this project will help reduce the reliance on testing, provide high-fidelity estimates of structural performance, reliability, robustness, and enable increased payload capability. The SBKF project objectives and approach used to develop and validate new design technologies are presented, and provide a glimpse into the future of design of the next generation of buckling-critical launch vehicle structures.
    Keywords: Structural Mechanics
    Type: AIAA Paper 2012-1686 , NF1676L-13283 , 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: Membrane dominated space structures are lightweight and package efficiently for launch; however, they must be expanded (deployed) in-orbit to achieve the desired geometry. These expandable structural systems include solar sails, solar power arrays, antennas, and numerous other large aperture devices that are used to collect, reflect and/or transmit electromagnetic radiation. In this work, an integrated approach to development of thin-film damage tolerant membranes is explored using advanced manufacturing. Bio-inspired hierarchical structures were printed on films using additive manufacturing to achieve improved tear resistance and to facilitate membrane deployment. High precision, robust expandable structures can be realized using materials that are both space durable and processable using additive manufacturing. Test results show this initial work produced higher tear resistance than neat film of equivalent mass. Future research and development opportunities for expandable structural systems designed using an integrated approach to structural design, manufacturing, and materials selection are discussed.
    Keywords: Structural Mechanics
    Type: AIAA Paper 2012-1951 , NF1676L-13247 , 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: The traditional approach used in the design of stability critical thin-walled circular cylin- ders, is to reduce unconservative buckling load predictions with an empirical knockdown factor. An alternative analysis-based approach to determine a lower bound buckling load for cylinders under axial compression is to use a lateral perturbation load to create an initial imperfection and determine the buckling load while that load is applied. This paper describes a preliminary e ort to develop a test capability to verify this approach. Results from tests of three aluminum alloy cylinders are described and compared to nite element predictions.
    Keywords: Structural Mechanics
    Type: AIAA Paper 2012-1689 , NF1676L-13197 , 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: Fluted-core sandwich composites consist of integral angled web members spaced between laminate face sheets, and may have the potential to provide benefits over traditional sandwich composites for certain aerospace applications. However, fabrication of large autoclave-cured fluted-core cylindrical shells with existing autoclaves will require that the shells be fabricated in segments, and joined longitudinally to form a complete barrel. Two different longitudinal fluted-core joint designs were considered experimentally in this study. In particular, jointed fluted-core-composite panels were tested in longitudinal compression because longitudinal compression is the primary loading condition in dry launch-vehicle barrel sections. One of the joint designs performed well in comparison with unjointed test articles, and the other joint design failed at loads approximately 14% lower than unjointed test articles. The compression-after-impact (CAI) performance of jointed fluted-core composites was also investigated by testing test articles that had been subjected to 6 ft-lb impacts. It was found that such impacts reduced the load-carrying capability by 9% to 40%. This reduction is dependent on the joint concept, component flute size, and facesheet thickness.
    Keywords: Structural Mechanics
    Type: AIAA Paper-2012-1690 , NF1676L-13195 , 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: The primary loading condition in launch-vehicle barrel sections is axial compression, and it is therefore important to understand the compression behavior of any structures, structural concepts, and materials considered in launch-vehicle designs. This understanding will necessarily come from a combination of test and analysis. However, certain potentially beneficial structures and structural concepts do not lend themselves to commonly used simplified analysis methods, and therefore innovative analysis methodologies must be developed if these structures and structural concepts are to be considered. This paper discusses such an analysis technique for the fluted-core sandwich composite structural concept. The presented technique is based on commercially available finite-element codes, and uses shell elements to capture behavior that would normally require solid elements to capture the detailed mechanical response of the structure. The shell thicknesses and offsets using this analysis technique are parameterized, and the parameters are adjusted through a heuristic procedure until this model matches the mechanical behavior of a more detailed shell-and-solid model. Additionally, the detailed shell-and-solid model can be strategically placed in a larger, global shell-only model to capture important local behavior. Comparisons between shell-only models, experiments, and more detailed shell-and-solid models show excellent agreement. The discussed analysis methodology, though only discussed in the context of fluted-core composites, is widely applicable to other concepts.
    Keywords: Structural Mechanics
    Type: AIAA Paper-2012-1867 , NF1676L-13187 , 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 23, 2012 - Apr 26, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...