ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • American Institute of Physics
  • American Physical Society
  • 2010-2014  (2)
  • 1975-1979  (3)
  • 1
    facet.materialart.
    Unknown
    American Institute of Physics
    In:  [Paper] In: 8. International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2010), 19.-25.09.2010, Rhodes, Greece ; pp. 612-616 .
    Publication Date: 2020-08-03
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Institute of Physics
    In:  The Leading Edge, 29 (2). pp. 156-162.
    Publication Date: 2019-06-17
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Institute of Physics
    In:  Journal of the Acoustical Society of America, 66 (4). pp. 1093-1101.
    Publication Date: 2020-07-16
    Description: The ratio of compressional wavevelocityV p to shear wavevelocityV s , and Poisson’s ratio in marine sediments and rocks are important in modeling the sea floor for underwater acoustics,geophysics, and foundation engineering. V p and V s versus depth information was linked at common depths in terrigenous sediments (to 1000 m) and in sands (to 20 m) to yield data on V p vs V s , and V p /V s and Poisson’s ratios versus depth. Soft, terrigenous sediments usually grade with depth into mudstones and shales; V p /V s ratios vary from about 13 or more at the sea floor to about 2.6 at 1000 m. Poisson’s ratios vary from above 0.49 at the sea floor to about 0.41 at 1000 m. In sands, V p , V s , and V p /V s have very high gradients in the first few meters; below about 5 m, V p /V s ratios decrease from about 9 to about 6 at 20 m; Poisson’s ratios vary from above 0.49 at the surface to above 0.48 at 20 m. The mean value of V p /V s in 30 laboratory samples of chalk and limestone is 1.90 (standard error: 0.03); mean Poisson’s ratio is 0.31. Literature data on basalts from the sea floor are reviewed. Equations relating V p to V s are given for terrigenous sediments, sands, and basalts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Institute of Physics
    In:  Journal of the Acoustical Society of America, 63 (2). pp. 366-377.
    Publication Date: 2020-07-16
    Description: In studies in underwater acoustics,geophysics, and geology, the relations between soundvelocity and density allow assignment of approximate values of density to sediment and rock layers of the earth’s crust and mantle, given a seismicmeasurement of velocity. In the past, single curves of velocity versus density represented all sediment and rock types. A large amount of recent data from the Deep Sea Drilling Project (DSDP), and reflection and refraction measurements of soundvelocity, allow construction of separate velocity–density curves for the principal marine sediment and rock types. The paper uses carefully selected data from laboratory and i n s i t umeasurements to present empirical sound velocity–density relations (in the form of regression curves and equations) in terrigenous silt clays, turbidites, and shale, in calcareous materials (sediments, chalk, and limestone), and in siliceous materials (sediments, porcelanite, and chert); a published curve for DSDP basalts is included. Speculative curves are presented for composite sections of basalt and sediments. These velocity–density relations, with seismicmeasurements of velocity, should be useful in assigning approximate densities to sea‐floor sediment and rock layers for studies in marine geophysics, and in forming geoacoustic models of the sea floor for underwater acoustic studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Institute of Physics
    In:  The Journal of the Acoustical Society of America, 58 (6). pp. 1318-1319.
    Publication Date: 2020-05-11
    Description: A simple equation is presented for the dependence of sound speed on temperature, salinity, and depth of water. The comparison with Del Grosso’s NRL II shows discrepancies of the order of tenths of m/sec for realistic values of the parameters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...