ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MOFsnon-ambient crystallographycrystal growth  (1)
  • charge-density researchmedicinal chemistrydrug designinvariomHansen–Coppens multipole modelquantum theory of atoms in molecules  (1)
  • International Union of Crystallography (IUCr)  (2)
  • Periodicals Archive Online (PAO)
  • 2010-2014  (2)
  • 1980-1984
  • 1925-1929
Collection
Keywords
Publisher
  • International Union of Crystallography (IUCr)  (2)
  • Periodicals Archive Online (PAO)
Years
  • 2010-2014  (2)
  • 1980-1984
  • 1925-1929
Year
  • 1
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2014-11-12
    Description: This article reviews efforts in accurate experimental charge-density studies with relevance to medicinal chemistry. Initially, classical charge-density studies that measure electron density distribution via least-squares refinement of aspherical-atom population parameters are summarized. Next, interaction density is discussed as an idealized situation resembling drug–receptor interactions. Scattering-factor databases play an increasing role in charge-density research, and they can be applied both to small-molecule and macromolecular structures in refinement and analysis; software development facilitates their use. Therefore combining both of these complementary branches of X-ray crystallography is recommended, and examples are given where such a combination already proved useful. On the side of the experiment, new pixel detectors are allowing rapid measurements, thereby enabling both high-throughput small-molecule studies and macromolecular structure determination to higher resolutions. Currently, the most ambitious studies compute intermolecular interaction energies of drug–receptor complexes, and it is recommended that future studies benefit from recent method developments. Selected new developments in theoretical charge-density studies are discussed with emphasis on its symbiotic relation to crystallography.
    Keywords: charge-density researchmedicinal chemistrydrug designinvariomHansen–Coppens multipole modelquantum theory of atoms in molecules
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2014-11-12
    Description: Metal–organic frameworks (MOFs) are one of the most intensely studied material types in recent times. Their networks, resulting from the formation of strong bonds between inorganic and organic building units, offer unparalled chemical diversity and pore environments of growing complexity. Therefore, advances in single-crystal X-ray diffraction equipment and techniques are required to characterize materials with increasingly larger surface areas, and more complex linkers. In addition, whilst structure solution from powder diffraction data is possible, the area is much less populated and we detail the current efforts going on here. We also review the growing number of reports on diffraction under non-ambient conditions, including the response of MOF structures to very high pressures. Such experiments are important due to the expected presence of stresses in proposed applications of MOFs – evidence suggesting rich and complex behaviour. Given the entwined and inseparable nature of their structure, properties and applications, it is essential that the field of structural elucidation is able to continue growing and advancing, so as not to provide a rate-limiting step on characterization of their properties and incorporation into devices and applications. This review has been prepared with this in mind.
    Keywords: MOFsnon-ambient crystallographycrystal growth
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...