ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • biomonitoring
  • Copernicus  (1)
  • Elsevier Science Limited  (1)
  • 2010-2014  (2)
  • 1980-1984
  • 1925-1929
Collection
  • Articles  (2)
Years
  • 2010-2014  (2)
  • 1980-1984
  • 1925-1929
Year
  • 1
    Publication Date: 2017-04-04
    Description: A biomonitoring survey, above tree line level, using two endemic species (Senecio aethnensis and Rumex aethnensis) was performed on Mt. Etna, in order to evaluate the dispersion and the impact of volcanic atmospheric emissions. Samples of leaves were collected in summer 2008 from 30 sites in the upper part of the volcano (1500- 3000 m a.s.l). Acid digestion of samples was carried out with a microwave oven, and 44 elements were analyzed by using plasma spectrometry (ICP-MS and ICP-OES). The highest concentrations of all investigated elements were found in the samples collected closest to the degassing craters, and in the downwind sector, confirming that the eastern flank of Mt. Etna is the most impacted by volcanic emissions. Leaves collected along two radial transects from the active vents on the eastern flank, highlight that the levels of metals decrease one or two orders of magnitude with increasing distance from the source. This variability is higher for volatile elements (As, Bi, Cd, Cs, Pb, Sb, Tl) than for more refractory elements (Al, Ba, Sc, Si, Sr, Th, U). The two different species of plants do not show significant differences in the bioaccumulation of most of the analyzed elements, except for lanthanides, which are systematically enriched in Rumex leaves. The high concentrations of many toxic elements in the leaves allow us to consider these plants as highly tolerant species to the volcanic emissions, and suitable for biomonitoring researches in the Mt. Etna area.
    Description: Published
    Description: Vienna, Austria
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Mt. Etna ; biomonitoring ; Trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Volatile metal(loid)s are known to be emitted from volcanoes worldwide.We tested the suitability of active moss monitoring for tracking volatilemetal(loid)s released fromthe fumarolic field on Vulcano Island, Italy, and differentiated fumaroles from other sources of gaseous and particulate trace elements such as sea spray and soil.Metal(loid) accumulation on the mosses per day did depend neither on the state of the exposed moss (dead or living) nor exposure time (3, 6, or 9 weeks). After collection, mosses were digested with either HNO3/H2O2 or deionized water and analyzed by ICP-MS.While for most elements both extraction methods yielded similar concentrations, higher concentrations were observed e.g. for Pb in the stronger HNO3/H2O2 extracts, indicating the presence of particles, which were not digested and removed by filtration in deionized water extracts. Due to their ubiquitous detection in comparable concentrations at all 23 moss monitoring stations all over the island, Li, Mg and Sr were attributed to sea spray origin. Iron, Co, W, V, Pb, Cr, Mo, and Ba occurred predominantly at the crater, where the soil was not covered by vegetation, and thus likely represent soil-borne particulate transport. Arsenic, Sb, S, Se, Tl, Bi, and I showed a clear concentration maximum within the fumarolic field. Concentrations gradually decreased along a transect in wind direction fromthe fumaroles, which confirms their volcanic origin. Activemossmonitoring thus proved to be an inexpensive and easy-to-apply tool for investigations of volcanic metal(loid) emissions and distributions enabling differentiation of trapped elements by their source of origin.
    Description: Published
    Description: 30–39
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: La Fossa crater ; particle transport ; biomonitoring ; volatilization ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...