ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (10)
  • 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism  (8)
  • biomonitoring
  • Elsevier Science Limited  (9)
  • Copernicus  (1)
  • 2010-2014  (10)
  • 1980-1984
  • 1925-1929
Collection
  • Articles  (10)
Source
Years
Year
  • 1
    Publication Date: 2021-06-25
    Description: The AND-1B drill core recovered a 13.57 million year Miocene through Pleistocene record from beneath the McMurdo Ice Shelf in Antarctica (77.9°S, 167.1°E). Varying sedimentary facies in the 1285 m core indicate glacial–interglacial cyclicity with the proximity of ice at the site ranging from grounding of ice in 917 m of water to ice free marine conditions. Broader interpretation of climatic conditions of the wider Ross Sea Embayment is deduced from provenance studies. Here we present an analysis of the iron oxide assemblages in the AND-1B core and interpret their variability with respect to wider paleoclimatic conditions. The core is naturally divided into an upper and lower succession by an expanded 170 m thick volcanic interval between 590 and 760 m. Above 590 m the Plio-Pleistocene glacial cycles are diatom rich and below 760 m late Miocene glacial cycles are terrigenous. Electron microscopy and rock magnetic parameters confirm the subdivision with biogenic silica diluting the terrigenous input (fine pseudo-single domain and stable single domain titanomagnetite from the McMurdo Volcanic Group with a variety of textures and compositions) above 590 m. Below 760 m, the Miocene section consists of coarse-grained ilmenite and multidomain magnetite derived from Transantarctic Mountain lithologies. This may reflect ice flow patterns and the absence of McMurdo Volcanic Group volcanic centers or indicate that volcanic centers had not yet grown to a significant size. The combined rock magnetic and electron microscopy signatures of magnetic minerals serve as provenance tracers in both ice proximal and distal sedimentary units, aiding in the study of ice sheet extent and dynamics, and the identification of ice rafted debris sources and dispersal patterns in the Ross Sea sector of Antarctica.
    Description: Published
    Description: 420–433
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: ANDRILL ; Antarctic Ice Sheet ; rock magnetism ; sediment provenance ; electron microscopy ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: A biomonitoring survey, above tree line level, using two endemic species (Senecio aethnensis and Rumex aethnensis) was performed on Mt. Etna, in order to evaluate the dispersion and the impact of volcanic atmospheric emissions. Samples of leaves were collected in summer 2008 from 30 sites in the upper part of the volcano (1500- 3000 m a.s.l). Acid digestion of samples was carried out with a microwave oven, and 44 elements were analyzed by using plasma spectrometry (ICP-MS and ICP-OES). The highest concentrations of all investigated elements were found in the samples collected closest to the degassing craters, and in the downwind sector, confirming that the eastern flank of Mt. Etna is the most impacted by volcanic emissions. Leaves collected along two radial transects from the active vents on the eastern flank, highlight that the levels of metals decrease one or two orders of magnitude with increasing distance from the source. This variability is higher for volatile elements (As, Bi, Cd, Cs, Pb, Sb, Tl) than for more refractory elements (Al, Ba, Sc, Si, Sr, Th, U). The two different species of plants do not show significant differences in the bioaccumulation of most of the analyzed elements, except for lanthanides, which are systematically enriched in Rumex leaves. The high concentrations of many toxic elements in the leaves allow us to consider these plants as highly tolerant species to the volcanic emissions, and suitable for biomonitoring researches in the Mt. Etna area.
    Description: Published
    Description: Vienna, Austria
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Mt. Etna ; biomonitoring ; Trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Pelagic carbonates are deposited far from continents, usually at water depths of 3000–6000 m, at rates below 10 cm/kyr, and are a globally important sediment type. Recent advances, with recognition of widespread preservation of biogenic magnetite (the inorganic remains of magnetotactic bacteria), have fundamentally changed our understanding of the magnetic properties of pelagic carbonates. We review evidence for the magnetic minerals typically preserved in pelagic carbonates, the effects of magnetic mineral diagenesis on paleomagnetic and environmental magnetic records of pelagic carbonates, and what magnetic properties can tell us about the open-ocean environments in which pelagic carbonates are deposited. We also discuss briefly late diagenetic remagnetisations recorded by some carbonates. Despite recent advances in our knowledge of these phenomena, much remains undiscovered. We are only at early stages of understanding how biogenic magnetite gives rise to paleomagnetic signals in sediments and whether it carries a poorly understood biogeochemical remanent magnetisation. Recently developed techniques have potential for testing how different magnetotactic bacterial species, which produce different magnetite morphologies, respond to changing nutrient and oxygenation conditions. Future work needs to test whether it is possible to develop proxies for ancient nutrient conditions from well-calibrated modern magnetotactic bacterial occurrences. A tantalizing link between giant magnetofossils and Paleogene hyperthermal events needs to be tested; much remains to be learned about the relationship between climate and the organisms that biomineralised these large and novel magnetite morphologies. Rather than being a well-worn subject that has been studied for over 60 years, the magnetic properties of pelagic carbonates hold many secrets that await discovery.
    Description: Published
    Description: 111-139
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Pelagic carbonate ; Limestone ; Magnetic minerals ; Biogenic magnetite ; Magnetofossils ; Diagenesis ; Remagnetisation ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Neolithic, Chalcolithic and Bronze Age anthropogenic cave sediments from three caves from northern Spain have been palaeomagnetically investigated. 662 oriented specimens corresponding to 39 burning events (ash–carbonaceous couplets) from the three sites with an average of 16 samples per fire were collected. 26 new archaeomagnetic directions have been obtained for the time period ranging from 5500 to 2000 yr cal. BC. These results represent the oldest archaeomagnetic directions obtained from burnt archaeological materials throughout all Western Europe. Magnetisation is carried by pseudo-single domain low-coercivity ferromagnetic minerals (magnetite, magnetite with no significant isomorphous substitution and/or maghaemite). Rock-magnetic experiments indicate a thermoremanent origin of the magnetisation although a thermochemical magnetisation cannot be excluded. Combination of the new data presented here and the recent updated Bulgarian database allows us to propose the first European palaeosecular variation (PSV) curve for the Neolithic. A bootstrap method was applied for the curve construction using penalised cubic B-splines in time. The new palaeosecular variation curve is well constrained from 6000 BC to 3700 BC, the period with the highest density of data, showing a declination maximum around 4700 BC and a minimum in inclination at 4300 BC, which are not recorded by the recent global CALS10K.1b and regional SCHA.DIF.8K models due to the use of lake sediment data. Dating resolution by using the proposed PSV curve oscillates from approximately ±30 yr to ±200 yr for the period 6000 to 1000 yr BC, reaching similar resolution as radiocarbon dating. Considering the good preservation, age-control and widespread occurrence of burnt archaeological materials across Southern Europe, they represent a new source of data for geomagnetic field modelling, as well as for archaeomagnetic dating.
    Description: Published
    Description: 124-137
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: secular variation ; archaeomagnetism ; rock-magnetism ; thermoremanence ; Neolithic ; archaeology ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: New paleomagnetic results from lower-to-middle Miocene samples from Ocean Drilling Program (ODP) Holes 744A and 744B, cored during ODP Leg 119 on the southern Kerguelen Plateau (Indian Ocean sector; Southern Ocean), provide a chronostratigraphic framework for an existing and under-utilized paleoclimate archive during a key period of Antarctic climate and ice sheet evolution. Site 744 is strategically positioned for high-latitude paleoceanographic and paleoclimatic studies because it lies within the southern domain of the Antarctic Circumpolar Current (ACC) and in proximity to the large and active Lambert Glacier-Amery Ice Shelf drainage system of the East Antarctic Ice Sheet. Magnetostratigraphic results were reported previously for this site, but technical difficulties and limited sampling prevented confident correlation of the magnetic polarity record with the geomagnetic polarity timescale. Our results, which are constrained by new semi-quantitative analyses of diatom assemblages and radiolarian first and last appearance events that are evaluated within a regional Southern Ocean biostratigraphic dataset through Constrained Optimization (CONOP) model runs, permit significant refinement of previous age models for the lower-to-middle Miocene sequence recovered at Site 744 (spanning the interval from ~ 21 to 13.7 Ma). An extended record of sediment accumulation, with average sedimentation rates of ~ 0.7–0.9 cm/kyr, is interrupted by a series of hiatuses in the middle Miocene. These disruptions in sediment supply, or erosional events, could mark a local response of north–south fluctuations in the location and/or strength of the Antarctic Circumpolar Current during transient glacial events within the Mid-Miocene Climate Optimum (MMCO; ~ 17 to 14.45 Ma). With the enhanced age control provided by this study, combined with a refined chronostratigraphy for the underlying upper Eocene to Oligocene strata, Site 744 becomes a good candidate for future high-resolution stable isotope and microfossil paleoecological work, which will further elucidate the late Paleogene and early Neogene paleoenvironmental history of the Southern Ocean.
    Description: Published
    Description: 434 – 454
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Antarctica ; Paleoclimate ; Miocene ; Diatom biostratigraphy ; Paleomagnetism ; CONOP ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Iron is the fourth most common element on Earth and gives rise to the magnetic properties of rock-forming minerals. Magnetic iron minerals are, therefore, abundant and occur in almost every type of geological material. Scientific interest in the occurrence of magnetic minerals in sediments was triggered over 60 years ago by paleomagnetic and magnetostratigraphic applications that relate to the capability of these minerals to record the Earth’s magnetic field shortly after deposition, and to store this information over geological timescales (e.g. Johnson et al., 1948, King, 1955 and Irving and Major, 1964). Marine sediments are a key source of long and continuous paleomagnetic records, which are essential for reconstructing past geomagnetic field variations and for dating using global geomagnetic reversals (Ogg and Smith, 2004). Magnetic polarity stratigraphy, combined with other age determination methods, has become an essential tool in sedimentary geochronology. Important aspects of sedimentary paleomagnetism, such as the mechanism, efficiency and timing of acquisition of a natural remanent magnetization (NRM), its preservation during diagenetic processes, and possible overprinting by magnetic minerals that formed long after deposition, are intensively investigated and have not yet been fully explained (e.g. Tauxe, 2006 and Roberts et al., 2013).
    Description: Published
    Description: 259–263
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: environmental magnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Volatile metal(loid)s are known to be emitted from volcanoes worldwide.We tested the suitability of active moss monitoring for tracking volatilemetal(loid)s released fromthe fumarolic field on Vulcano Island, Italy, and differentiated fumaroles from other sources of gaseous and particulate trace elements such as sea spray and soil.Metal(loid) accumulation on the mosses per day did depend neither on the state of the exposed moss (dead or living) nor exposure time (3, 6, or 9 weeks). After collection, mosses were digested with either HNO3/H2O2 or deionized water and analyzed by ICP-MS.While for most elements both extraction methods yielded similar concentrations, higher concentrations were observed e.g. for Pb in the stronger HNO3/H2O2 extracts, indicating the presence of particles, which were not digested and removed by filtration in deionized water extracts. Due to their ubiquitous detection in comparable concentrations at all 23 moss monitoring stations all over the island, Li, Mg and Sr were attributed to sea spray origin. Iron, Co, W, V, Pb, Cr, Mo, and Ba occurred predominantly at the crater, where the soil was not covered by vegetation, and thus likely represent soil-borne particulate transport. Arsenic, Sb, S, Se, Tl, Bi, and I showed a clear concentration maximum within the fumarolic field. Concentrations gradually decreased along a transect in wind direction fromthe fumaroles, which confirms their volcanic origin. Activemossmonitoring thus proved to be an inexpensive and easy-to-apply tool for investigations of volcanic metal(loid) emissions and distributions enabling differentiation of trapped elements by their source of origin.
    Description: Published
    Description: 30–39
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: La Fossa crater ; particle transport ; biomonitoring ; volatilization ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We investigate fault-trapped waves observed at a permanent broad-band station (FAGN) installed on the San Demetrio Fault, about 20 km southeast of L'Aquila. This fault has the same strike of the Paganica Fault which was responsible for the MW 6.3, 6 April 2009 earthquake. The two faults display an en-echelon pattern with a few km offset. We have found that events causing efficient trapped waves are clustered at the northwestern and southeastern bottom ends of the ruptured Paganica fault plane. The efficiency of trapped waves at FAGN, which is located about 5 km far from the ruptured fault plane, indicates that the two faults are linked at depth. This suggests that fault segments in the study area can be part of a longer and continuous fault system which controls the seismic hazard of the region. Moreover, we have found that the two earthquake clusters generating the most efficient trapped waves occur in portions of the fault system with the highest fluid pressure.
    Description: Published
    Description: 1-8
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: 6 April 2009 L'Aquila earthquake ; Paganica Fault ; normal fault system ; fault-trapped waves ; fluid pressure ; central Apennines ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The magnetic properties of traffic-related airborne particulate matter (PM) in the city of Rome, Italy, have been previously analyzed and interpreted as suitable proxies to discriminate between different vehicular sources. In this study, we carried out a new set of measurements and analyses specifically devoted to the identification and evaluation of the contribution of ultrafine superparamagnetic (SP) particles to the overall magnetic assemblage of traffic-related PM in Rome. In particular, the presence and the concentration of SP particles have been estimated on powders collected from disk brakes and gasoline exhaust pipes of circulating vehicles and from Quercus ilex leaves grown along high-traffic roads, measuring their hysteresis parameters in a range of temperatures from 293 K to 10 K and measuring the time decay of their saturation remanent magnetization (MRS) at room temperature. The SP fraction contributes for the 10-15% to the overall room temperature MRS and causes the observed changes in the hysteresis properties measured upon cooling down to 10 K. In all the analyzed samples the SP fraction is associated to a generally prevailing population of larger ferrimagnetic multidomain (MD) particles and we suppose that in traffic-related PM the SP fraction mainly occurs as coating of MD particles and originated by localized stress in the oxidized outer shell surrounding the unoxidized core of magnetite-like grains. Under this hypothesis, the estimate of SP content in traffic-related PM cannot be considered a robust proxy to estimate the overall concentration of nanometric particles.
    Description: Published
    Description: 131-140
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Particulate Matter ; Air pollution ; Environmental magnetism ; Superparamagnetic particles ; Hysteresis properties ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-06-14
    Description: The depositional history of the Storfjorden and Kveithola trough-mouth fans (TMFs) in the northwestern Barents Sea has been investigated within two coordinated Spanish and Italian projects in the framework of the International Polar Year (IPY) Activity 367, NICE STREAMS. The investigation has been conducted using a multidisciplinary approach to the study of sediment cores positioned on high-resolution multibeam bathymetry and TOPAS/CHIRP sub-bottom profiles. Core correlation and the age model were based on 27 AMS 14C samples, rock magnetic parameters, lithofacies sequences, and the presence of marker beds including two oxidized layers marking the post Last Glacial Maximum (LGM) inception of deglaciation (OX-2) and the Younger Dryas cold climatic event (OX-1). Sediment facies analysis allowed the distinction of a number of depositional processes whose onset appears closely related to ice stream dynamics and oceanographic patterns in response to climate change. The glacigenic diamicton with low water content, high density, and high shear strength, deposited during glacial maxima, indicates ice streams grounded at the shelf edge. Massive release of IRD occurred at the inception of deglaciation in response to increased calving rates with possible outer ice streams lift off and collapse. The presence of a several-meter-thick sequence of interlaminated sediments deposited by subglacial outbursts of turbid meltwater (plumites) indicates rapid ice streams' melting and retreat. Crudely-layered and heavily-bioturbated sediments were deposited by contour currents under climatic/environmental conditions favorable to bioproductivity. The extreme sedimentation rate of 3.4 cm a− 1 calculated for the plumites from the upper-slope area indicates a massive, nearly instantaneous (less than 150 years), terrigenous input corresponding to an outstanding meltwater event. We propose these interlaminated sediments to represent the high-latitude marine record of MeltWater Pulse 1a (MWP-1a). Different bathymetric and oceanographic conditions controlled locally the mode of glacial retreat, resulting in different thickness of plumites on the upper continental slope of the Storfjorden and Kveithola TMFs. It is possible that the southern part of Storfjorden TMF received additional sediments from the deglaciation of the neighboring Kveithola ice stream.
    Description: Published
    Description: 309–326
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Barents Sea ; sedimentary processes ; LGM ; meltwater plumes ; gullies ; MWP-1a ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...