ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (82,385)
  • Wiley  (82,385)
  • American Institute of Physics
  • 2010-2014  (54,272)
  • 1980-1984  (24,257)
  • 1950-1954  (2,427)
  • 1945-1949  (1,429)
  • Biology  (82,385)
Collection
  • Articles  (82,385)
Years
Year
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
    Publication Date: 2012-11-01
    Electronic ISSN: 1940-3372
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
  • 12
  • 13
  • 14
  • 15
    Publication Date: 2011-03-01
    Electronic ISSN: 1940-3372
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-06-16
    Electronic ISSN: 1940-3372
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2012-11-01
    Electronic ISSN: 1940-3372
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
  • 19
    Publication Date: 2011-03-01
    Electronic ISSN: 1940-3372
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1983-01-01
    Print ISSN: 1434-2944
    Electronic ISSN: 1522-2632
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1981-01-01
    Print ISSN: 1434-2944
    Electronic ISSN: 1522-2632
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1981-01-01
    Print ISSN: 1434-2944
    Electronic ISSN: 1522-2632
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1980-01-01
    Print ISSN: 1434-2944
    Electronic ISSN: 1522-2632
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1980-01-01
    Print ISSN: 1434-2944
    Electronic ISSN: 1522-2632
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1981-01-01
    Print ISSN: 1434-2944
    Electronic ISSN: 1522-2632
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1981-01-01
    Print ISSN: 1434-2944
    Electronic ISSN: 1522-2632
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-09-08
    Description: Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would expect relative recruitment to be higher in cold and dry climates as a result of tree migration with juveniles located further poleward than adults. Alternatively, relative recruitment could be higher in warm and wet climates as a result of higher tree population turnover with increased temperature and precipitation. Using the USDA Forest Service's Forest Inventory and Analysis data at regional scales, we jointly modeled juvenile and adult abundance distributions for 65 tree species in climate space of the eastern United States. We directly compared the optimal climate conditions for juveniles and adults, identified the climates where each species has high relative recruitment, and synthesized relative recruitment patterns across species. Results suggest that for 77% and 83% of the tree species, juveniles have higher optimal temperature and optimal precipitation, respectively, than adults. Across species, the relative recruitment pattern is dominated by relatively more abundant juveniles than adults in warm and wet climates. These different abundance-climate responses through life history are consistent with faster population turnover and inconsistent with the geographic trend of large-scale tree migration. Taken together, this juvenile-adult analysis suggests that tree species might respond to climate change by having faster turnover as dynamics respond to longer growing seasons and higher temperatures, before there is evidence of poleward migration at biogeographic scales. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-09-12
    Description: Bone remodeling is a natural process that enables growth and maintenance of the skeleton. It involves the deposition of mineralized matrix by osteoblasts and resorption by osteoclasts. Several cancers that metastasize to bone negatively perturb the remodeling process through a series of interactions with osteoclasts, and osteoblasts. These interactions have been described as the “vicious cycle” of cancer metastasis in bone. Due to the inaccessibility of the skeletal tissue it is difficult to study this system in vivo . In contrast, standard tissue culture lacks sufficient complexity. We have developed a specialized three-dimensional culture system that permits growth of a non-vascularized, multiple-cell-layer of mineralized osteoblastic tissue from pre-osteoblasts. In this study, the essential properties of bone remodeling were created in vitro by co-culturing the mineralized collagenous osteoblastic tissue with actively resorbing osteoclasts followed by reinfusion with proliferating pre-osteoblasts. Cell-cell and cell-matrix interactions were determined by confocal microscopy as well as by assays for cell specific cytokines and growth factors. Osteoclasts, differentiated in the presence of osteoblasts, led to degradation of the collagen-rich extracellular matrix. Further addition of metastatic breast cancer cells to the co-culture mimicked the vicious cycle; i.e. there was a further reduction in osteoblastic tissue thickness, an increase in osteoclastogenesis, chemotaxis of cancer cells to osteoclasts and formation of cancer cells into large colonies. The resulting model system permits detailed study of fundamental osteobiological and osteopathological processes in a manner that will enhance development of therapeutic interventions to skeletal diseases. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-09-13
    Description: Aberrant glycosylation by N -acetylgalactosaminyl transferases (GALNTs) is a well-described pathological alteration that is widespread in hereditary diseases, prominently including human cancers, familial tumoral calcinosis and hyperostosis-hyperphosphatemia. In this study, we integrated different computational tools to perform the in silico analysis of clinically significant mutations (nsSNPs/ single amino acid change) at both functional and structural levels, found in human GALNT3, GALNT8, GALNT12 and GALNT13 genes. From function and structure based insights, mutations encoding R162Q, T359K, C574G, G359D, R297W, Y396C & D313N substitutions were concordantly predicted highly deleterious for relevant GALNTs proteins. From intriguing findings, T359K- GALNT3 was simulated with high contribution for disease susceptibility (tumor calcinosis) as compared to its partner variant T272K [Ichikawa et al., 2006]. Similarly, the prediction of high damaging behavior, evolutionary conservation and structural destabilization for C574G were proposed as major contributing factors to regulate metabolic disorder underlying tumor calcinosis and hyperostosis-hyperphosphatemia syndrome. In case of R297W- GALNT12 , prediction of highly deleterious effect and disruption in ionic interactions were anticipated with reduction in enzymatic activity, associated with bilateral breast cancer and primary colorectal cancers. The second GALNT12 mutation (D303N)-known splice variant- was predicted with disease severity as a result of decrease in charge density and buried behavior neighboring the catalytic B domain. In the lack of adequate in silico data about systematic characterization of clinically significant mutations in GALNTs genes, current study can be used as a significant tool to interpret the role of GALNTs reaction chemistry in disease-association risks in body. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-09-13
    Description: Objective To investigate whether crosstalk between RUNX2 and miRNAs is involved in tooth eruption regulated by dental follicle cells(DFCs) and the possible molecular mechanism. Methods Blood samples and embedded dental follicles were collected from patients with cleidocranial dysplasia (CCD), and RUNX2 gene mutations were analyzed, then RUNX2 +/m DFCs were isolated and identified. The characteristics of RUNX2 +/m DFCs were analyzed. The differential expression of miRNAs was detected between the RUNX2 +/m DFCs and RUNX2 +/+ DFCs by microarray, and target genes were predicted by miRGen. miR-146a was chosen for further investigation, and its effects in DFCs were analyzed by transfecting its mimics and inhibitors, and expression of genes involved in tooth eruption were detected. Results A novel insertion mutation (c.309_310insTG) of RUNX2 gene was identified which had an effect on the characteristics of DFCs. Compared with the RUNX2 +/+ DFCs, there were 69 microRNAs more than 2-fold up-regulated and 54 microRNAs more than 2-fold down-regulated in the RUNX2 +/m DFCs. Among these, miR-146a decreased significantly in RUNX 2 +/m DFCs, and expression of RUNX2, CSF-1,EGFR and OPG was significantly altered when miR-146a was over-expressed or inhibited. Conclusion RUNX2 gene mutation contributes to the characteristic change of dental follicle cells, and the crosstalk between RUNX2 gene and miRNAs may be one of the key regulatory mechanisms of differentiation of dental follicle cells. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-09-13
    Description: Cancer stem cells (CSC) have a central role in driving tumor growth. Since metabolism is becoming an important diagnostic and therapeutic target, characterization of CSC line energetic properties is an emerging need. Embryonic and adult stem cells, compared to differentiated cells, exhibit a reduced mitochondrial activity and a stronger dependence on aerobic glycolysis. Here, we aimed to comparatively analyze bioenergetics features of the human osteosarcoma 3AB-OS CSC-like line, and the parental osteosarcoma MG63 cells, from which 3AB-OS cells have been previously selected. Our results suggest that 3AB-OS cells depend on glycolytic metabolism more strongly than MG63 cells. Indeed, growth in glucose shortage or in presence of galactose or pyruvate -mitochondrial specific substrates- leads to a significant reduction of their proliferation compared to MG63 cells. Accordingly, 3AB-OS cells show an increased expression of lactate dehydrogenase A (LDHA) and a larger accumulation of lactate in the culture medium. In line with these findings 3AB-OS cells as compared to MG63 cells present a reduced mitochondrial respiration, a stronger sensitivity to glucose depletion or glycolysis inhibition and a lessened sensitivity to oxidative phosphorylation inhibitors. Additionally, in contrast to MG63 cells, 3AB-OS display fragmented mitochondria, which become networked as they grow in glucose-rich medium, while almost entirely loose these structures growing in low glucose. Overall, our findings suggest that 3AB-OS CSCs energy metabolism is more similar to normal stem cells and to cancer cells characterized by a glycolytic anaerobic metabolism. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-09-13
    Description: Areca chewing is an important environmental risk factor for development of oral premalignant lesions and cancer. Epidemiological evidence indicates that areca chewing is tightly linked to oral carcinogenesis. However, the pathogenetic impacts of areca nut extract (ANE) on normal human oral keratinocytes (HOKs) are unclear and possibly involve oxidative stress via redox imbalance. Sirtuin 3 (SIRT3) is a member of the sirtuin family of proteins that play an important role in regulating cellular reactive oxygen species (ROS) production. Recent studies have confirmed that ANE and other areca ingredients can induce ROS. In this study, we examined the role of SIRT3 in the regulation of ANE-induced ROS in HOK cells. We examined HOK cell viability following treatment with various ANE concentrations. ANE-induced cytotoxicity increased in a dose-dependent manner and was approximately 48% at a concentration of 50 μg/ml after 24 h. SIRT3 expression and enzyme activity were up-regulated in HOK cells by ANE-induced oxidative stress. Additionally, we identified that SIRT3 controls the enzymatic activity of mitochondrial proteins, such as forkhead box O3a (Foxo3a) transcription factor and antioxidant-encoding gene superoxide dismutase 2 (SOD2), by deacetylation in HOK cells. Moreover, SIRT3-mediated deacetylation and activation of Foxo3a promotes nuclear localization in vivo . These findings suggest that SIRT3 is an endogenous negative regulator in response to ANE-induced oxidative stress and demonstrate an essential role for redox balance in HOK cells. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-09-13
    Description: Collagen is the most abundant structural protein in mammals and is expressed in various tissues. In recent years, sphingosine 1-phosphate receptors (S1PRs) have been proven to play an important role in the regulation of collagen expression. Our previous studies reported that S1PRs are involved in TGF-β1-induced collagen expression via up-regulating S1PR1/3 in mouse bone marrow-derived mesenchymal stem cells (BMSCs), and result in experimental mouse liver fibrogenesis. But it remains unclear whether this process happens in human bone marrow-derived mesenchymal stem cells (hMSCs). In this study, we provide evidences that S1PR1/3, but not S1PR2, negatively regulate the expression of collagen in hMSCs using cellular and molecular approaches in vitro . We find that treatment of hMSCs with TGF-β1 up-regulated collagen expression in a dose- and time-dependent manner. Meanwhile, TGF-β1 inhibited the expression of S1PR1/3, but not S1PR2, in hMSCs in a time-dependent manner. Furthermore, either selective knock-down of S1PR1 or silencing S1PR3 induced collagen α1(I) and collagen α1(III) expression in hMSCs. In contrast, inhibition of S1PR2 by siRNA had no effects on the expression of collagen. Altogether, all these findings demonstrated that collagen expression was negatively regulated by S1PR1 and S1PR3 in hMSCs. This study highlights the differences between hMSCs and mouse BMSCs, provides a new regulation mechanism for collagen expression, and points out the risk of utilizing hMSCs in clinical applications. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Wiley
    In: BioEssays
    Publication Date: 2013-09-15
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Wiley
    In: BioEssays
    Publication Date: 2013-09-15
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-09-15
    Description: [1]  Although they are key components of the surface ocean carbon budget, physical processes inducing carbon fluxes across the mixed-layer base, i.e. subduction and obduction, have received much less attention than biological processes. Using a global model analysis of the pre-industrial ocean, physical carbon fluxes are quantified and compared to the other carbon fluxes in and out of the surface mixed-layer, i.e. air-sea CO 2 gas exchange and sedimentation of biogenic material. Model-based carbon obduction and subduction are evaluated against independent data-based estimates to the extent that was possible. We find that climatological physical fluxes of DIC are two orders of magnitude larger than the other carbon fluxes and vary over the globe at smaller spatial scale. At temperate latitudes, the subduction of DIC and to a much lesser extent (〈10%) the sinking of particles maintain CO 2 undersaturation, whereas DIC is obducted back to the surface in the tropical band (75%) and Southern Ocean (25%).At the global scale, these two large counter-balancing fluxes of DIC amount to +275.5 PgC y -1 for the supply by obduction and -264.5 PgC y -1 for the removal by subduction which is ~ 3 to 5 times larger than previous estimates. Moreover, we find that subduction of organic carbon (dissolved and particulate) represents ~ 20% of the total export of organic carbon: at the global scale, we evaluate that, of the 11 PgC y–1 of organic material lost from the surface every year, 2.1 PgC y -1 are lost through subduction of organic carbon. Our results emphasis the strong sensitivity of the oceanic carbon cycle to changes in mixed-layer depth, ocean currents and wind.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-09-15
    Description: Climate warming threatens to increase mass coral bleaching events, and several studies have projected the demise of tropical coral reefs this century. However, recent evidence indicates corals may be able to respond to thermal stress though adaptive processes (e.g., genetic adaptation, acclimatization, and symbiont shuffling). How these mechanisms might influence warming induced bleaching is largely unknown. This study compared how different adaptive processes could affect coral bleaching projections. We used the latest bias-corrected global sea surface temperature (SST) output from the NOAA/GFDL Earth System Model 2 (ESM2M) for the pre-industrial period though 2100 to project coral bleaching trajectories. Initial results showed that, in the absence of adaptive processes, application of a pre-industrial climatology to the NOAA Coral Reef Watch bleaching prediction method over-predicts the present day bleaching frequency. This suggests that corals may have already responded adaptively to some warming over the industrial period. We then modified the prediction method so that the bleaching threshold either permanently increased in response to thermal history (e.g., simulating directional genetic selection) or temporarily increased for 2-10 years in response to a bleaching event (e.g., simulating symbiont shuffling). A bleaching threshold that changes relative to the preceding 60 years of thermal history reduced the frequency of mass bleaching events by 20-80% compared with the ‘no adaptive response’ prediction model by 2100, depending on the emissions scenario. When both types of adaptive responses were applied, up to 14% more reef cells avoided high frequency bleaching by 2100. However, temporary increases in bleaching thresholds alone only delayed the occurrence of high frequency bleaching by ~10 years in all but the lowest emissions scenario. Future research should test the rate and limit of different adaptive responses for coral species across latitudes and ocean basins to determine if and how much corals can respond to increasing thermal stress. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-09-15
    Description: Questions What are the general tree communities found in tidal freshwater swamps along four large coastal rivers in the southeastern United States (US)? How do these communities compare to other tidal freshwater swamps in the US and South America? Locations Tidal floodplains of major rivers along the Atlantic and Gulf coasts of the southeastern US: Savannah, Altamaha, Suwannee and Apalachicola Rivers. Methods An extensive survey of trees and shrubs was conducted to describe the communities from a range of tidal freshwater swamps. River basins studied include micro-tidal (Gulf coast) and meso-tidal (Atlantic coast) regimes, and study areas were located both near and distant to primary channels. A total of 128 plots (100 m 2 each) were inventoried, distributed evenly over the Savannah and Altamaha Rivers along the Atlantic coast, and the Suwannee and Apalachicola Rivers along the Gulf coast. Multivariate statistics helped discern communities and the significant indicator species in each. Results Four general communities were characterized and named according to the strongest individual indicator species in each: Water Tupelo ( Nyssa aquatica ) Community, Swamp Tupelo ( Nyssa biflora ) Community, Dwarf Palmetto ( Sabal minor ) Community and Cabbage Palm ( Sabal palmetto ) Community. Conclusions Descriptions of most tidal freshwater swamps in the southeastern US fit within the communities described in this study. Because studies that make inferences between environmental drivers (e.g. salinity, hydroperiod, hurricanes) and specific community types are best applied to the same communities (but perhaps different river systems), this work provides a framework by which tidal freshwater forested wetlands can be accurately compared based on their tree communities. We suggest that, within the broad range of our inventories, the four communities described identify the primary associations that should be tracked within most tidal freshwater swamps of the US. However, we identify some river basins in the US that do not fit this construct. Diversity of major tree communities in tidal freshwater swamps outside the US is generally much lower (with the notable exception of Amazonian hardwood tidal várzea), as are basal area values. Tidal freshwater forested wetlands are a poorly studied ecosystem that continues to be heavily impacted by global climate change, specifically via sea-level rise. We provide this four-community framework as a means to more accurately compare and predict ecosystem responses between different river systems. We describe how most published accounts fit into this framework and identify those that do not fit.
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-09-15
    Description: Ecological Applications, Volume 0, Issue 0, Ahead of Print. Patterns of migratory connectivity are a vital yet poorly understood component of the ecology and evolution of migratory birds. Our ability to accurately characterize patterns of migratory connectivity is often limited by the spatial resolution of the data but recent advances in probabilistic assignment approaches have begun pairing stable isotopes with other sources of data (e.g., genetic and mark-recapture) to improve the accuracy and precision of inferences based on a single marker. Here, we combine stable isotopes and geographic variation in morphology (wing length) to probabilistically assign Wood thrush (Hylocichla mustilena) captured on the wintering grounds to breeding locations. In addition, we use known origin samples to validate our model and assess potentially important impacts of covariates of isotopic and morphological data (age, sex and breeding location). Our results show that despite relatively high levels of mixing across their breeding and non-breeding ranges, moderate levels of migratory connectivity along an east-west gradient exist. In addition, combining stable isotopes with geographic variation in wing improved the precision of breeding assignments by 10% and 37% compared to assignments based on isotopes alone or wing length alone, respectively. These results demonstrate that geographical variation in morphological traits can greatly improve estimates of migratory connectivity when combined with other intrinsic markers (e.g., stable isotopes or genetic data). The wealth of morphological data available from museum specimens across the world represents a tremendously valuable, but largely untapped, resource that is widely applicable for quantifying patterns of migratory connectivity.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-09-15
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. The evolutionary pressures that drive long larval planktonic durations in some coastal marine organisms, while allowing direct development in others, have been vigorously debated. We introduce into the argument the asymmetric dispersal of larvae by coastal currents and find that the strength of the currents helps determine which dispersal strategies are evolutionarily stable. In a spatially and temporally uniform coastal ocean of finite extent, direct development is always evolutionarily stable. For passively drifting larvae, long planktonic durations are stable when the ratio of mean to fluctuating currents is small and the rate at which larvae increase in size in the plankton is greater than the mortality rate (both in units of per time). However, larval behavior that reduces downstream larval dispersal for a given time in plankton will be selected for, consistent with widespread observations of behaviors that reduce dispersal of marine larvae. Larvae with long planktonic durations are shown to be favored not for the additional dispersal they allow, but for the additional fecundity that larval feeding in the plankton enables. We analyze the spatial distribution of larval life histories in a large database of coastal marine benthic invertebrates and document a link between ocean circulation and the frequency of planktotrophy in the coastal ocean. The spatial variation in the frequency of species with planktotrophic larvae is largely consistent with our theory; increases in mean currents lead to a decrease in the fraction of species with planktotrophic larvae over a broad range of temperatures.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-09-15
    Description: The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered and snow-free albedo (Δα), which influences predictions of future warming in coupled climate models, despite being poorly constrained at seasonal and century time scales. Here we compare satellite observations and coupled climate model representations of albedo and tree cover for the boreal and Arctic region. Our analyses reveal consistent declines in albedo with increasing tree cover, occurring south of latitudinal tree line, that are poorly represented in coupled climate models. Observed relationships between albedo and tree cover differ substantially between snow-covered and snow-free periods, and among plant functional type (PFT). Tree cover in models varies widely but surprisingly does not correlate well with model albedo. Further, our results demonstrate a relationship between tree cover and snow-albedo feedback that may be used to accurately constrain high latitude albedo feedbacks in coupled climate models under current and future vegetation distributions. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-09-15
    Description: Because of global land surface warming, extreme temperature events are expected to occur more often and more intensely, affecting the growth and development of the major cereal crops in several ways, thus affecting the production component of food security. In this paper, we have identified rice and maize crop responses to temperature in different, but consistent, phenological phases and development stages. A literature review and data compilation of around 140 scientific articles have determined the key temperature thresholds and response to extreme temperature effects for rice and maize, complementing an earlier study on wheat. Lethal temperatures and cardinal temperatures, together with error estimates, have been identified for phenological phases and development stages. Following the methodology of previous work, we have collected and statistically analysed temperature thresholds of the three crops for the key physiological processes such as leaf initiation, shoot growth and root growth and for the most susceptible phenological phases such as sowing to emergence, anthesis and grain filling. Our summary shows that cardinal temperatures are conservative between studies and are seemingly well-defined in all three crops. Anthesis and ripening are the most sensitive temperature stages in rice as well as in wheat and maize. We call for further experimental studies of the effects of transgressing threshold temperatures so such responses can be included into crop impact and adaptation models. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-09-15
    Description: Question Poikilohydric organisms can survive desiccation without damage and recover soon after re-wetting. In this work we explore the realized niches of epilithic, poikilohydric organisms, i.e. lichenized and lichenicolous fungi and bryophytes, grouped into 15 functional guilds based on growth form, reproductive strategy and photosynthetic traits. We hypothesize that in Mediterranean ecosystems, the distribution of these guilds is controlled by water availability and solar radiation, together with characteristics of the substrate. Location Western Sardinia (Italy). The area hosts Mediterranean Quercus ilex forests on basaltic substrata within an agroforestry landscape. Methods The presence or absence of species from each guild was recorded in 1025 small quadrats (10 × 10 cm). Four environmental variables were measured: solar radiation, microtopography (potential water run-off), substrate roughness and number of cracks. The occurrence of each guild was related to environmental variables using non-parametric multiplicative regression, and ecological niches of the guilds were derived from those models. Results The occurrence of all functional guilds varied significantly according to the selected environmental variables. In most cases, solar radiation was the most important variable; TI was included first in the model of two sorediate guilds, whereas four sexually reproducing functional guilds had surface relief as first variable. The growth forms were separated along a gradient of increasing solar radiation, whereas water run-off and surface roughness mainly discriminated reproductive strategies and photobionts. Vegetatively reproducing guilds with other photobionts than Euphyta-like pigments were confined to the border of the ecological space, defined by gradients of environmental factors, which was largely occupied by more competitive, sexually reproducing organisms. Conclusions Functional traits of epilithic poikilohydric organisms were associated with ecological adaptations to the stressful environment of Mediterranean outcrops. We showed that their response in terms of probability of occurrence is coherent with quantitative gradients of solar radiation and water availability at the micro-scale. Functional traits of epilithic poikilohydric organisms were associated to ecological adaptations to the stressing environment of Mediterranean outcrops. Their response in terms of probability of occurrence is coherent with quantitative gradients of solar radiation and water availability at the micro-scale.
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-09-17
    Description: Neuropeptide F (NPF), the invertebrate homolog of neuropeptide Y (NPY) in vertebrates, shares similarity of structure and function with NPY. However, a few NPYs were also found in some insect species. In this paper, two neuropeptide genes encoding a NPF and a NPY were cloned from a tobacco budworm Helicoverpa assulta cDNA library. The npf1 gene further produces two splicing variants of rnRNAs, i.e. npf1a (lacks the 120 bp segment) and npf1b (includes a 120 bp segment). These two splicing variants form two mature peptides, NPF1a and NPF1b by modification of transcripts. NPF and NPY co-exist in H. assulta.
    Print ISSN: 0739-4462
    Electronic ISSN: 1520-6327
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-09-17
    Description: Cervical carcinoma represents the paradigm of virus-induced cancers, where virtually all cervical cancers come from previous “high-risk” HPV infection. The persistent expression of the HPV viral oncoproteins E6 and E7 is responsible for the reprogramming of fundamental cellular functions in the host cell, thus generating a noticeable, yet only partially explored, imbalance in protein molecular networks and cell signaling pathways. Eighty-eight cellular factors, identified as HPV direct or surrogate targets, were chosen and monitored in a retrospective analysis for their mRNA expression in HPV-induced cervical lesions, from dysplasia to cancer. Real-time quantitative PCR (qPCR) was performed by using formalin-fixed, paraffin embedded archival samples. Gene expression analysis identified 40 genes significantly modulated in LSIL, HSIL and squamous cervical carcinoma. Interestingly, among these, the expression level of a panel of four genes, TOP2A, CTNNB1, PFKM and GSN, was able to distinguish between normal tissues and cervical carcinomas. Immunohistochemistry was also done to assess protein expression of two genes among those up-regulated during the transition between dysplasia and carcinoma, namely E2F1 and CDC25A, and their correlation with clinical parameters. Besides the possibility of significantly enhancing the use of some of these factors in diagnostic or prognostic procedures, these data clearly outline specific pathways, and thus key biological processes, altered in cervical dysplasia and carcinoma. Deeper insight on how these molecular mechanisms work may help widen the spectrum of novel innovative approaches to these virus-induced cell pathologies. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-09-17
    Description: Cellular pathways are numerous and are highly integrated in function in the control of cellular systems. They collectively regulate cell division, proliferation, survival and apoptosis of cells and mutagenesis of key genes that control these pathways can initiate neoplastic transformations. Understanding these pathways is crucial to future therapeutic and preventive strategies of the disease. Ovarian cancers are of three major types; epithelial, germ-cell and stromal. However, ovarian cancers of epithelial origin, arising from the mesothelium, are the predominant form. Of the subtypes of ovarian cancer, the high-grade serous tumors are fatal, with low survival rate due to late detection and poor response to treatments. Close examination of preserved ovarian tissues and in vitro studies have provided insights into the mechanistic changes occurring in cells mediated by a few key genes. This review will focus on pathways and key genes of the pathways that are mutated or have aberrant functions in the pathology of ovarian cancer. Non-genetic mechanisms that are gaining prominence in the pathology of ovarian cancer, miRNAs and epigenetics, will also be discussed in the review. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-09-17
    Description: Normal pregnancy is associated with systemic vasodilation and decreased vascular contraction, partly due to increased release of endothelium-derived vasodilator substances. Endothelin-1 (ET-1) is an endothelium-derived vasoconstrictor acting via endothelin receptor type A (ET A R) and possibly type B (ET B R) in vascular smooth muscle cells (VSMCs), with additional vasodilator effects via endothelial ET B R. However, the role of ET-1 receptor subtypes in the regulation of vascular function during pregnancy is unclear. We investigated whether the decreased vascular contraction during pregnancy reflects changes in the expression/activity of ET A R and ET B R. Contraction was measured in single aortic VSMCs isolated from virgin, mid-pregnant (mid-Preg, day 12) and late-Preg (day 19) Sprague-Dawley rats, and the mRNA expression, protein amount, tissue and cellular distribution of ET A R and ET B R were examined using RT-PCR, Western blots, immunohistochemistry and immunofluorescence. Phenylephrine (Phe, 10 −5  M), KCl (51 mM) and ET-1 (10 −6  M) caused VSMC contraction that was in late-Preg 〈 mid-Preg and virgin rats. In VSMCs treated with ET B R antagonist BQ788, ET-1 caused significant contraction that was still in late-Preg 〈 mid-Preg and virgin rats. In VSMCs treated with the ET A R antagonist BQ123, ET-1 caused a small contraction; and the ET B R agonists IRL-1620 and sarafotoxin 6c (S6c) caused similar contraction that was in late-Preg 〈 mid-Preg and virgin rats. RT-PCR revealed similar ET A R, but greater ET B R mRNA expression in pregnant vs. virgin rats. Western blots revealed similar ET A R, and greater protein amount of ET B R in endothelium-intact vessels, but reduced ET B R in endothelium-denuded vessels of pregnant vs. virgin rats. Immunohistochemistry revealed prominent ET B R staining in the intima, but reduced ET A R and ET B R in the aortic media of pregnant rats. Immunofluorescence signal for ET A R and ET B R was less in VSMCs of pregnant vs. virgin rats. The pregnancy-associated decrease in ET A R- and ET B R-mediated VSMC contraction appears to involve downregulation of ET A R and ET B R expression/activity in VSM, and may play a role in the adaptive vasodilation during pregnancy. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-09-17
    Description: Neuroregenerative medicine is an ever-growing field in which regeneration of lost cells/tissues due to a neurodegenerative disease is the ultimate goal. With the scarcity of available replacement alternatives, stem cells provide an attractive source for regenerating neural tissue. While many stem cell sources exist, including: mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs), the limited cellular potency, technical difficulties, and ethical considerations associated with these make finding alternate sources a desirable goal. Periodontal ligament stem cells (PDLSCs) derived from the neural crest were induced into neural-like cells using a combination of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). Morphological changes were evident in our treated group, seen under both light microscopy and scanning electron microscopy (SEM). A statistically significant increase in the expression of neuron-specific β-tubulin III and the neural stem/progenitor cell marker nestin, along with positive immunohistochemical staining for glial fibrillary acidic protein (GFAP), demonstrated the success of our treatment in inducing both neuronal and glial phenotypes. Positive staining for synaptophysin demonstrated neural connections and electrophysiological recordings indicated that when subjected to whole cell patch clamping, our treated cells displayed inward currents conducted through voltage-gated sodium (Na + ) channels. Taken together, our results indicate the success of our treatment in inducing PDLSCs to neural-like cells. The ease of sourcing and expansion, their embryologic neural crest origin, and the lack of ethical implications in their use make PDLSCs an attractive source for use in neuroregenerative medicine. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-09-17
    Description: Urotensin II (UII), a vasoactive peptide modulates renal hemodynamics. However, the physiological functions of UII in glomerular cells are unclear. In particular, whether UII alters mesangial tone remains largely unknown. The present study investigates the physiological effects of UII on intracellular Ca 2+ ([Ca 2+ ] i ) and contraction in glomerular mesangial cells (GMCs). This study also tested the hypothesis that the regulator of G-protein signaling (RGS) controls UII receptor (UTR) activity in GMCs. RT-PCR, Western immunoblotting, and immunofluorescence revealed UTR expression and localization in cultured murine GMCs. Mouse UII (mUII) stimulated [Ca 2+ ] i elevation in GMCs in the absence and presence of extracellular Ca 2+ . mUII also caused a reduction in planar GMC surface area. mUII-induced [Ca 2+ ] i elevation and contraction in GMCs were attenuated by SB 657510, a UTR antagonist, araguspongin B, an inositol 1,4,5-trisphosphate receptor antagonist, thapsigargin, a sarco/endoplasmic reticulum Ca 2+ -ATPase inhibitor, and La 3+ , a store-operated Ca 2+ channel blocker, but not nimodipine, an L-type Ca 2+ channel blocker. In situ proximity ligation assay indicated molecular proximity between endogenous RGS2 and UTR in the cells. Treatment of GMCs with mUII increased plasma membrane association of RGS2 by ∼ 2-fold. mUII also increased the interaction between RGS2 and UTR in the cells. siRNA-mediated knockdown of RGS2 in murine GMCs increased mUII-induced [Ca 2+ ] i elevation and contraction by ∼ 35 and 31%, respectively. These findings indicate that mUII induces [Ca 2+ ] i elevation and contraction in murine GMCs. Data also suggest that UTR activation stimulates RGS2 recruitment to GMC plasma membrane as a negative feedback mechanism to regulate UTR signaling. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-09-17
    Description: Poly-N-acetyllactosamine (PLN) is a unique glycan composed of repeating units of the common disaccharide (Galβ1,4-GlcNAcβ1,3) n . The expression of PLN on glycoprotein core structures minimally requires enzyme activities for β1,4-galactosyltransferase (β4GalT) and β1,3-N-acetylglucosminyltransferase (β3GnT). Because β4GalTs are ubiquitous in most cells, PLN expression is generally ascribed to the tissue-specific transcription of 8 known β3GnT genes in mice. In the olfactory epithelium (OE), β3GnT2 regulates expression of extended PLN chains that are essential for axon guidance and neuronal survival. N-glycan branching and core composition, however, can also modulate the extent of PLN modification. Here we show for the first time that the β1,6-branching glycosyltransferase GCNT2 (formerly known as IGnT) is expressed at high levels specifically in the OE and other sensory ganglia. Postnatally, GCNT2 is maintained in mature olfactory neurons that coexpress β3GnT2 and PLN. This highly specific coexpression suggests that GCNT2 and β3GnT2 function cooperatively in PLN synthesis. In support of this, β3GnT2 and GCNT2 cotransfection in HEK293T cells results in high levels of PLN expression on the cell surface and on adenylyl cyclase 3, a major carrier of PLN glycans in the OE. These data clearly suggest that GCNT2 functions in vivo together with β3GnT2 to determine PLN levels in olfactory neurons by regulating β1,6-branches that promote PLN extension. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-09-17
    Description: Question In many plant species from fire-prone ecosystems germination is promoted by smoke. Mediterranean Basin (MB) flora is no exception. However, most information regarding germination response to smoke in the MB comes from a few experiments performed in laboratory conditions. This approach does not consider factors that occur in the field, such as species interactions, density-dependent processes or the fact that seeds spent time in the soil seed bank. In addition, species selection has been biased (e.g. there is a lack of information about annual species). Hence the importance of smoke relative to other fire cues is not clear, and we have a biased knowledge of post-fire community assembly in the MB. In this framework, we tested the following hypotheses: (1) smoke enhances seedling emergence and establishment from the soil seed bank of MB species, and (2) annual species are an important component of this smoke-stimulated flora. Location Mediterranean fire-prone shrublands in eastern Spain. Western Mediterranean Basin. Methods We performed a field experiment in which we applied a liquid smoke treatment and tracked seedling emergence and seedling establishment during 1 yr. Differences between smoke and control subplots with respect to seedling emergence and seedling establishment were analysed at different scales: community, growth form (annual or perennial), family and species level. Results At the community level, smoke played a clear role in seedling recruitment, increasing seedling emergence and seedling establishment. In addition, for most plots, families and species, establishment was higher in smoke subplots compared to the control. Annual species establishment was clearly stimulated by smoke but no effect was detected for perennials. Conclusions Smoke derived from wildfires has a key effect on plant recruitment and hence on community assembly in the MB vegetation. We applied liquid smoke in 21 plots and tracked seedling emergence and establishment during one year. Smoke increased seedling emergence and establishment globally and for most plots, families and species, and was most evident for annuals. Our results suggest that smoke derived from wildfires has a key effect on plant recruitment and community assembly in the Mediterranean Basin vegetation.
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-09-18
    Description: Objective The aim of this study was to evaluate the effect of artemisinin on the proliferation and apoptosis of rat vascular smooth muscle cells (VSMCs). Method Primary rat VSMCs were treated with various doses of artemisinin. Cell proliferation was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the messenger RNA and protein expressions of proliferating cell nuclear antigen were determined by reverse-transcription polymerase chain reaction and immunohistochemistry. Apoptosis was measured using annexin V and propidium iodide double staining evaluated by flow cytometry. Protein expression of Bax, Bcl2, and cyclin-dependent kinase 4 was determined by Western blot. Results After 72 h of treatment, artemisinin significantly inhibited VSMC proliferation in a dose-dependent manner. Treatment with 1 mM artemisinin for 72 h significantly reduced the expression of proliferating cell nuclear antigen messenger RNA. On the other hand, the same treatment increased the apoptosis of VSMCs, the activation of caspase-3, the Bax protein expression, and the Bax/Bcl2 ratio. Conclusion The results suggest that artemisinin can effectively inhibit VSMC proliferation and induce VSMC apoptosis. Copyright © 2013 John Wiley & Sons, Ltd.
    Print ISSN: 0263-6484
    Electronic ISSN: 1099-0844
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-09-18
    Description: [1]  A small hot spring that is informally called “Fe-waterfall spring” and is located in the Rehai geothermal area discharges hot (42 to 73 °C), near-neutral (pH =7.65) Fe-rich water. Submerged reddish precipitates are composed largely of ferrihydrite, goethite, lepidocrocite, opal-A, quartz, and anorthite, as revealed by X-ray diffraction (XRD) and Mössbauer spectroscopy. Molecular phylogenetic analysis demonstrates that the bacterial community in these precipitates is mainly composed of Cyanobacteria, Planctomycetes, β-proteobacteria, Deinococci-Thermus and Chlorobi. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) examinations show that abundant sheath-like Fe oxyhydroxides, which exhibit different morphologies and sizes, are present in Fe-rich precipitates. These sheath-like structures are composed of ferrihydrite rather than more crystalline lepidocrocite or goethite. Energy dispersive X-ray spectrometer (EDS), scanning transmission electron microscopy (STEM) and nano secondary ion mass spectrometry (Nano-SIMS) reveal that they are mainly composed of Fe, Si and O, together with some trace elements. Most of the sheath-like structures are not morphologically comparable to biogenic Fe oxyhydroxides produced by known chemolithotrophic Fe oxidizers, which is consistent with the fact that no chemolithotrophic Fe oxidizers were identified by molecular analysis in the precipitates. We suggest that the sheath-like Fe oxyhydroxides are formed through passive Fe sorption and nucleation onto the cell walls of various thermophiles rather than by the direct metabolic activities of chemolithotrophic Fe oxidizers. Biogenic sheath-like Fe oxyhydroxides in Fe-waterfall spring have important implications for geochemical cycles driven by microorganisms, the origin of microfossils and the formation of banded iron formations (BIFs) in the Archean ocean.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-09-18
    Description: [1]  We present the concept of the Carbon Cycle Data Assimilation System and describe its evolution over the last two decades from an assimilation system around a simple diagnostic model of the terrestrial biosphere to a system for the calibration and initialization of the land component of a comprehensive earth system model. We critically review the capability of this modeling framework to integrate multiple data streams, to assess their mutual consistency and with the model, to reduce uncertainties in the simulation of the terrestrial carbon cycle, to provide, in a traceable manner, reanalysis products with documented uncertainty, and to assist the design of the observational network. We highlight some of the challenges we met and experience we gained, give recommendations for operating the system and suggest directions for future development.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-09-19
    Description: [1]  Hypolithic microbial communities are productive niches in deserts worldwide, but many facets of their basic ecology remain unknown. The Namib Desert is an important site for hypolith study because it has abundant quartz rocks suitable for colonization and extends west to east across a transition from fog to rain dominated moisture sources. We show fog sustains and impacts hypolithic ecology in several ways: (1) fog effectively replaces rainfall in the western zone of the central Namib to enable high (≥95%) hypolithic abundance at landscape (1- 10 km) and larger scales; and (2) high water availability, through fog (western zone) and/or rainfall (eastern zone), results in smaller size-class rocks being colonized (mean 6.3 ± 1.2 cm) at higher proportions (e.g. 98% vs. ca . 3%) than in previously studied hyperarid deserts. We measured 0.1% of incident sunlight as the lower limit for hypolithic growth on quartz rocks in the Namib, and found uncolonized ventral rock surfaces were limited by light rather than moisture. In-situ monitoring showed that, although rainfall supplied more liquid water (36 hrs) per event than fog (mean, 4 hrs), on an equivalent annual basis, fog provided nearly twice as much liquid water as rainfall to the hypolithic zone. Hypolithic abundance reaches 100% at a mean annual precipitation (MAP) ca . 40-60 mm, but at a much lower MAP ( ca . 25 mm) when moisture from fog is available.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-09-20
    Description: Ecology, Volume 94, Issue 9, Page 1955-1965, September 2013. Laboratory studies have demonstrated that the microscopic stages of kelps can rapidly resume development from a delayed state. Like terrestrial seeds or aquatic resting eggs, banks of delayed kelp stages may supplement population recovery after periods of stress, playing an important role for kelp populations that experience adult sporophyte absences due to seasonal or interannual disturbances. We found that removing the microscopic stages from natural rock substratum could prevent the appearance of juvenile kelp sporophytes for three months and the establishment of a diverse kelp assemblage for over four months within a southern California kelp forest. Juveniles were observed within one month in plots where microscopic stages were left intact, which may confer an advantage for the resulting sporophytes as they attain larger sizes before later recruiting neighbors. Microsatellite diversity was high (expected heterozygosity HE ≈ 0.9) for juveniles and adults within our sites. Using a microsatellite-based parentage analysis for the dominant kelp, Macrocystis pyrifera, we estimated that a portion of the new M. pyrifera sporophyte recruits had originated from their parents at least seven months after their parents had disappeared. Similar delay durations have been demonstrated in recent laboratory studies. Additionally, our results suggest that zoospore dispersal distances 〉50 m may be supported by including additional microsatellite loci in the analysis. We propose a mixed-age and, potentially, a mixed-origin bank of M. pyrifera gametophytes promotes maximal genetic diversity in recovering populations and reduces population genetic subdivision and self-fertilization rates for intact populations by promoting the survival of zoospores dispersed 〉10 m and during inhospitable environmental conditions.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-09-20
    Description: Ecology, Volume 94, Issue 9, Page 2109-2110, September 2013. Abstract Total body size, mass or linear measurements, and gonad mass or volumes have been recorded for the North American Pacific coast sea urchins Strongylocentrotus purpuratus, Mesocentrotus (Strongylocentrotus) franciscanus, and Lytechinus pictus by various workers at diverse sites and for varying lengths of time from 1954 to 2009. Some dissections included other body components such as the gut, body wall, and Aristotle's lantern, and some dissections included both wet and dry mass. There are numerous peer-reviewed publications that have used some of these data, but some data have appeared only in graduate theses or in the gray literature. There also are data that have never appeared outside the original data sheets. Historically, data were used to describe reproductive cycles and then to compare responses to stressors such as food limitation or pollution. Differences in temperature among sites also have been explored. More recently, dissection data have linked gonad development to ocean conditions, so called bottom-up forcing. The data set presented here is a historical record of gonad development for a common group of marine invertebrates in intertidal and nearshore environments, which can be used to test hypotheses concerning future changes associated with climate change and ocean acidification along the Pacific Coast of North America.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-09-20
    Description: Ecology, Volume 94, Issue 9, Page 2108-2111, September 2013. Abstract Chytridiomycosis caused by the fungal invasive pathogen Batrachochytrium dendrobatidis (Bd) was first detected in 1999 in Christchurch, New Zealand, in the Australian introduced frog species Litoria raniformis. It was detected in wild native frogs in the critically endangered Leiopelma archeyi in 2001 on the Coromandel Peninsula and has been suggested as responsible for a mass decline (88%) in that population between 1994 and 2002. We report the current distribution, host species and prevalence, where known, of Bd in New Zealand, which is essential for conservation management of New Zealand native frogs (Leiopelma spp.). The data set is structured so that it can be readily added to the Australian Bd database for further analyses. Our data included all regions in New Zealand and six offshore islands at 135 sites with 704 records from 23 contributors spanning collection dates 1930–2010. We report 54 positive sites from 132 positive individuals. We also detail negative findings, but declaring an area free from disease should consider the sensitivity of the test used and numbers of individuals tested. The data also included a comprehensive museum survey testing 152 individuals from five species (20 L. archeyi, 50 L. hochstetteri, 15 L. aurea, 40 L. ewingii, and 27 L. raniformis) from 1930–1999 using histology and Bd-specific immunohistochemistry. All museum specimens were negative, so the 1999 positive result is still the earliest record. In the L. archeyi Coromandel Ranges population, the period prevalence of Bd from 2006 to 2010 was relatively stable at 16%, but the number of animals tested remains low (up to N = 19) due to the now depleted population numbers. The period prevalence of Bd in the L. archeyi Whareorino population has remained both consistent and low (6%) between 2005 and 2010. In L. hochstetteri, L. hamiltoni, and L. pakeka all sampling for Bd has been negative. Positive Bd results have been found in all three Litoria spp., but Bd has not been found in the six offshore areas tested. Most data have been previously unpublished and represent the first confirmed reports of Bd in many regions and species in New Zealand.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-09-20
    Description: Will warming lead to an increased use of older soil organic carbon (SOC) by microbial communities, thereby inducing C losses from C-rich alpine soils? We studied soil microbial community composition, activity and substrate use after three and four years of soil warming (+4°C, 2007-2010) at the alpine treeline in Switzerland. The warming experiment was nested in a free air CO 2 enrichment experiment using depleted 13 CO 2 (δ 13 C = –30‰, 2001-2009). We traced this depleted 13 C label in phospholipid fatty acids (PLFA) of the organic layer (0-5 cm soil depth) and in C mineralized from root-free soils to distinguish substrate ages used by soil microorganisms: fixed before 2001 (“old”), from 2001 to 2009 (“new”) or in 2010 (“recent”). Warming induced a sustained stimulation of soil respiration (+38%) without decline in mineralizable SOC. PLFA concentrations did not reveal changes in microbial community composition due to soil warming, but soil microbial metabolic activity was stimulated (+66%). Warming decreased the amount of new and recent C in the fungal biomarker 18:2ω6,9 and the amount of new C mineralized from root-free soils, implying a shift in microbial substrate use towards a greater use of old SOC. This shift in substrate use could indicate an imbalance between C inputs and outputs, which could eventually decrease SOC storage in this alpine ecosystem. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-09-20
    Description: Ecology, Volume 94, Issue 9, Page 2055-2065, September 2013. A growing body of research documents the importance of plant genetic effects on arthropod community structure. However, the mechanisms underlying these effects are often unclear. Additionally, plant genetic effects have largely been quantified in common gardens, thus inflating the estimates of their importance by minimizing levels of natural variation. Using Valeriana edulis, a dioecious plant with genetically based sex determination, we conducted surveys and experiments on wild-grown individuals to document field patterns of arthropod association between the sexes and the mechanisms underlying these plant genetic effects. Three years of surveys revealed strong and consistent sex-biased arthropod association in wild-grown plants: female plants supported 4-fold, 1.5-fold, and 4-fold higher densities of aphids, aphid predators, and aphid-tending ants, respectively, compared to males. There was mixed evidence that the female bias for aphids was due to higher plant quality, while we found no difference between plant sexes in aphid preference or the top-down effects of predators and tending ants. Female bias for ants was due to both the greater attractiveness of female plants (direct effect mediated by floral nectar) and an independent, weaker effect of higher aphid abundance on females (density-mediated indirect effect). Conversely, the female bias for predators was driven solely by the greater attractiveness of female plants. We did not find interaction modification, i.e., ant–aphid and predator–aphid interactions were equivalent between plant sexes. Plant sex explained 0.24%, 2.28%, and 4.42% of the variance in aphids, predators, and ants, respectively, values comparable to but slightly weaker than those previously reported from common-garden studies. In contrast to the prediction of diminished plant genetic effects with increasing trophic level, we show how weak indirect effects on predators and parasitoids (via herbivores) can be complemented by strong direct effects via common plant traits (floral resources). In summary, we document direct and indirect effects of genetically based sex on a multi-trophic arthropod community that were expressed in wild-grown plants across multiple years.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-09-20
    Description: Ecology, Volume 94, Issue 9, Page 1893-1897, September 2013. The leaf economics spectrum (LES) has revolutionized the way many ecologists think about quantifying plant ecological trade-offs. In particular, the LES has connected a clear functional trade-off (long-lived leaves with slow carbon capture vs. short-lived leaves with fast carbon capture) to a handful of easily measured leaf traits. Building on this work, community ecologists are now able to quickly assess species carbon-capture strategies, which may have implications for community-level patterns such as competition or succession. However, there are a number of steps in this logic that require careful examination, and a potential danger arises when interpreting leaf-trait variation among species within communities where trait relationships are weak. Using data from 22 diverse communities, we show that relationships among three common functional traits (photosynthetic rate, leaf nitrogen concentration per mass, leaf mass per area) are weak in communities with low variation in leaf life span (LLS), especially communities dominated by herbaceous or deciduous woody species. However, globally there are few LLS data sets for communities dominated by herbaceous or deciduous species, and more data are needed to confirm this pattern. The context-dependent nature of trait relationships at the community level suggests that leaf-trait variation within communities, especially those dominated by herbaceous and deciduous woody species, should be interpreted with caution.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-09-20
    Description: Ecology, Volume 94, Issue 9, Page 2111-2112, September 2013. Abstract We present data from the first five years (2008–2012) of the establishment of the 25.6-ha Smithsonian Conservation Biology Institute (SCBI) Large Forest Dynamics Plot, comprising the initial woody stem census, woody seedling plot surveys, seed rain, and dendrochronological data. The plot is in mature secondary mixed deciduous forest 5 km south of Front Royal, Virginia, USA. The initial plot census enumerated 38 932 free-standing living stems and 29 991 living individuals ≥1 cm dbh comprising 62 species, 38 genera, and 26 families, along with an additional 1248 dead/missing standing stems, for a total of 40 180 stems. Dominant canopy trees include tulip poplar (Liriodendron tulipifera), hickories (Carya spp.), oaks (Quercus spp.), white ash (Fraxinus americana), and black gum (Nyssa sylvatica). Prominent understory components include spicebush (Lindera benzoin), pawpaw (Asimina triloba), American hornbeam (Carpinus caroliniana), witchhazel (Hamamelis virginiana), and eastern redbud (Cercis canadensis). Few species predominate numerically on the plot; seven species have 〉1000 individuals (71.3% of the total). Mean stand density was 1179 living individuals/ha, while mean basal area was 34.1 m2/ha. Of the total plot area, 4 ha have had white-tailed deer (Odocoileus virginianus) exclusion since 1990. Woody seedling surveys from 2010–2012 in 354 1-m2 plots measured 19 415 seedlings of 47 species, from new germinants up to 1 cm dbh. Community-wide seed rain data from 200 0.5-m2 litterfall traps yielded a total of 9197 records from 37 species. Long-term seed data collected from 1986–2011 for Quercus and Carya within the exclosure and two replicate sites are also presented, documenting considerable annual variation in mast production. Dendrochronological data from 492 tree cores suggested the major canopy trees established circa 1900, but scattered trees of several species existed earlier. Large-scale forest dynamics plots employing standardized methodology have a long, rich history in the tropics. Similar plots in the temperate zone have been largely lacking, however. The SCBI plot represents one of the first of its kind in the Smithsonian Global Earth Observatory's recently established network of such plots, complementing its well-known network of tropical forest plots and enabling comparative studies on forest ecology and climate change at the global scale.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-09-21
    Description: Previous studies indicate that muscle Pgc-1α expression governs the proportion of muscle fibre types. As a first step in using diet to manipulate the proportion of muscle fibre types by using Pgc-1α expression, the present study investigates the modulation of Pgc-1α expression by feedstuffs. A luciferase-based Pgc-1α reporter construct (Pgc-1α(-2553)-luc) that contains the mouse Pgc-1α promoter (−2553 to +78 bp) was prepared. A screen of ethanol extracts from 33 feedstuffs indicated that oolong tea and roasted green tea extracts decreased Pgc-1α(-2553)-luc expression in C2C12 myoblasts. The transcriptional repression of Pgc-1α by tea leaf extracts was reproduced in hepatic HepG2 cells. We further examined the effects of the alcohol extracts of tea waste and its silage on Pgc-1α transcription; the tea waste silage extract inhibited Pgc-1α transcription. Treatment with the extracts of raw tea leaves, tea waste and tea waste silage effectively decreased Pgc-1α mRNA levels during myogenesis of myosatellite cells. The present results suggest that tea leaves and their by-products could be used to modulate proportions of muscle fibre types. Copyright © 2013 John Wiley & Sons, Ltd.
    Print ISSN: 0263-6484
    Electronic ISSN: 1099-0844
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-09-21
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. The installation of green roofs, defined here as rooftops with a shallow soil cover and extensive vegetation, has been proposed as a possible measure to mitigate the loss of green space caused by the steady growth of cities. However, the effectiveness of green roofs in supporting arthropod communities, and the extent to which they facilitate connectivity of these communities within the urban environment is currently largely unknown. We investigated the variation of species community composition (β-diversity) of four arthropod groups with contrasting mobility (Carabidae, Araneae, Curculionidae and Apidae) on 40 green roofs and 40 extensively managed green sites on the ground in the city of Zurich, Switzerland. With redundancy analysis and variation partitioning i) we disentangled the relative importance of local environmental conditions, the surrounding land-cover composition, and habitat connectivity on species community composition. ii) We searched for specific spatial scales of habitat connectivity for the different arthropod groups. iii) Finally, we discussed the ecological and functional value of green roofs in cities. Our study revealed that on green roofs community composition of highly mobile arthropod groups (bees and weevils) were mainly shaped by habitat connectivity while low mobile arthropod groups (carabids and spiders) were more influenced by local environmental conditions. A similar but less pronounced pattern was found for ground communities. The high importance of habitat connectivity in shaping highly mobile species community composition indicates that these green roof communities are substantially connected by the frequent exchange of individuals among surrounding green roofs. On the other hand, low mobile species communities on green roofs are more likely connected to ground sites than to other green roofs. The integration of green roofs in urban spatial planning strategies has great potential to enable higher connectivity among green spaces, so that eventually even communities of low mobile species become connected. Furthermore, improving the design of green roofs (composition and configuration of vegetation and soil types) could enhance the ecological value especially for low mobile species.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-09-21
    Description: Ecological Applications, Volume 0, Issue 0, Ahead of Print. Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory non-native smallmouth bass have also been introduced into many northwestern streams and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and non-native species on stream-rearing salmon, and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin; we compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing Chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of Chinook salmon rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing Chinook salmon and potentially predatory bass in the early summer (2-4-fold increase) and greater abundance of bass. We found that riparian restoration could prevent the extirpation of Chinook salmon from the more altered stream, and could also restrict bass from occupying the upper 31 km of salmon rearing habitat. The proposed methodology and model predictions are critical for prioritizing climate-change adaptation strategies before salmonids are exposed to both warmer water and greater predation risk by non-native species.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-09-21
    Description: Circumpolar expansion of tall shrubs and trees into Arctic tundra is widely thought to be occurring as a result of recent climate warming, but little quantitative evidence exists for northern Siberia, which encompasses the world's largest forest-tundra ecotonal belt. We quantified changes in tall shrub and tree canopy cover in eleven, widely-distributed Siberian ecotonal landscapes by comparing very-high-resolution photography from the Cold War-era “Gambit” and “Corona” satellite surveillance systems (1965-1969) with modern imagery. We also analyzed within-landscape patterns of vegetation change to evaluate the susceptibility of different landscape components to tall shrub and tree increase. The total cover of tall shrubs and trees increased in nine of eleven ecotones. In northwest Siberia, alder ( Alnus ) shrubland cover increased 5.3 – 25.9% in five ecotones. In Taymyr and Yakutia, larch ( Larix ) cover increased 3.0 – 6.7% within three ecotones, but declined 16.8% at a fourth ecotone due to thaw of ice-rich permafrost. In Chukotka, the total cover of alder and dwarf pine ( Pinus ) increased 6.1% within one ecotone and was little-changed at a second ecotone. Within most landscapes, shrub and tree increase was linked to specific geomorphic settings, especially those with active disturbance regimes such as permafrost patterned-ground, floodplains, and colluvial hillslopes. Mean summer temperatures increased at most ecotones since the mid-1960s, but rates of shrub and tree canopy cover expansion were not strongly correlated with temperature trends and were better correlated with mean annual precipitation. We conclude that shrub and tree cover is increasing in tundra ecotones across most of northern Siberia, but rates of increase vary widely regionally and at the landscape-scale. Our results indicate that extensive changes can occur within decades in moist, shrub-dominated ecotones, as in northwest Siberia, while changes are likely to occur much more slowly in the highly continental, larch-dominated ecotones of central and eastern Siberia. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-09-21
    Description: The adaptation of different species to warming temperatures has been increasingly studied. Moose ( Alces alces ) is the largest of the ungulate species occupying the northern latitudes across the globe, and in Finland it is the most important game species. It is very well adapted to severe cold temperatures, but has a relatively low tolerance to warm temperatures. Previous studies have documented changes in habitat use by moose due to high temperatures. In many of these studies the used areas have been classified according to how much thermal cover they were assumed to offer based on satellite/aerial imagery data. Here, we identified the vegetation structure in the areas used by moose under different thermal conditions. For this purpose we used airborne laser scanning (ALS) data extracted from the locations of GPS-collared moose. This provided us with detailed information about the relationships between moose and the structure of forests it uses in different thermal conditions and we were therefore able to determine and differentiate between the canopy structures at locations occupied by moose during different thermal conditions. We also discovered a threshold beyond which moose behaviour began to change significantly: as day temperatures began to reach 20 ○ C and higher, the search for areas with higher and denser canopies during daytime became evident. The difference was clear when compared to habitat use at lower temperatures, and was so strong that it provides supporting evidence to previous studies, suggesting that moose are able to modify their behaviour to cope with high temperatures, but also that the species is likely to be affected by warming climate. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-09-21
    Description: Mountain ecosystems are particularly susceptible to climate change. Characterizing intraspecific variation of alpine plants along elevational gradients is crucial for estimating their vulnerability to predicted changes. Environmental conditions vary with elevation, which might influence plastic responses and affect selection pressures that lead to local adaptation. Thus, local adaptation and phenotypic plasticity among low and high elevation plant populations in response to climate, soil and other factors associated with elevational gradients might underlie different responses of these populations to climate warming. Using a transplant experiment along an elevational gradient, we investigated reproductive phenology, growth and reproduction of the nutrient-poor grassland species Ranunculus bulbosus , Trifolium montanum , and Briza media . Seeds were collected from low and high elevation source populations across the Swiss Alps and grown in nine common gardens at three different elevations with two different soil depths. Despite genetic differentiation in some traits, the results revealed no indication of local adaptation to the elevation of population origin. Reproductive phenology was advanced at lower elevation in low and high elevation populations of all three species. Growth and reproduction of T. montanum and B. media were rarely affected by garden elevation and soil depth. In R. bulbosus , however, growth decreased and reproductive investment increased at higher elevation. Furthermore, soil depth influenced growth and reproduction of low elevation R. bulbosus populations. We found no evidence for local adaptation to elevation of origin and hardly any differences in the responses of low and high elevation populations. However, the consistent advanced reproductive phenology observed in all three species shows that they have the potential to plastically respond to environmental variation. We conclude that populations might not be forced to migrate to higher elevations as a consequence of climate warming, as plasticity will buffer the detrimental effects of climate change in the three investigated nutrient-poor grassland species. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-09-21
    Description: The impact of climate change on the stability of soil organic carbon (SOC) remains a major source of uncertainty in predicting future changes in atmospheric CO 2 levels. One unsettled issue is whether the mineralization response to temperature depends on SOC mineralization rate. Long-term (〉25 years) bare fallow experiments (LTBF) in which the soil is kept free of any vegetation and organic inputs, and their associated archives of soil samples represent a unique research platform to examine this issue as with increasing duration of fallow, the lability of remaining total SOC decreases. We retrieved soils from LTBF experiments situated at Askov (Denmark), Grignon (France), Ultuna (Sweden) and Versailles (France) and sampled at the start of the experiments and after 25, 50, 52, and 79 years of bare fallow, respectively. Soils were incubated at 4, 12, 20 and 35 °C and the evolved CO 2 monitored. The apparent activation energy ( Ea ) of SOC was then calculated for similar loss of CO 2 at the different temperatures. The Ea was always higher for samples taken at the end of the bare-fallow period, implying a higher temperature sensitivity of stable C than of labile C. Our results provide strong evidence for a general relationship between temperature sensitivity and SOC stability upon which significant improvements in predictive models could be based. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-09-21
    Description: [1]  In recent decades, it has been found useful to partition the pelagic environment using the concept of biogeochemical provinces, or BGCPs, within each of which it is assumed that environmental conditions are distinguishable and unique at global scale. The boundaries between provinces respond to features of physical oceanography and, ideally, should follow seasonal and inter-annual changes in ocean dynamics. But this ideal has not been fulfilled except for small regions of the oceans. Moreover, BGCPs have been used only as static entities having boundaries that were originally established to compute global primary production. In the present study, a new statistical methodology based on non-parametric procedures is implemented to capture the environmental characteristics within 56 BGCPs. Four main environmental parameters (bathymetry, chlorophyll-a concentration, surface temperature and salinity) are used to infer the spatial distribution of each BGCP over 1997–2007. The resulting dynamic partition allows us to integrate changes in the distribution of BGCPs at seasonal and inter-annual timescales, and so introduces the possibility of detecting spatial shifts in environmental conditions.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-09-21
    Description: The temperature dependence of aerobic scope has been suggested to be a major determinant of how marine animals will cope with future rises in environmental temperature. Here we present data suggesting that in some animals, the temperature dependence of anaerobic scope (i.e. the capacity for surviving severe hypoxia) may determine present-day latitudinal distributions and potential for persistence in a warmer future. As a model for investigating the role of anaerobic scope, we studied two sibling species of coral-dwelling gobies, Gobiodon histrio and G. erythrospilus , with different latitudinal distributions, but which overlap in equal abundance at Lizard Island (14°40'S) on the Great Barrier Reef. These species did not differ in the temperature dependence of resting oxygen consumption or critical oxygen concentration (the lowest oxygen level where resting oxygen consumption can be maintained). By contrast, the more equatorial species ( G. histrio ) had a better capacity to endure anaerobic conditions at oxygen levels below the critical oxygen concentration at the high temperatures (32 – 33 °C) more likely to occur near the equator, or in a warmer future. These results suggest that anaerobic scope, in addition to aerobic scope, could be important in determining the impacts of global warming on some marine animals. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-09-21
    Description: Most North American forests are at some stage of post-disturbance regrowth, subject to a changing climate, and exhibit growth and mortality patterns that may not be closely coupled to annual environmental conditions. Distinguishing the possibly interacting effects of these processes is necessary to put short-term studies in a longer-term context, and particularly important for the carbon-dense, fire-prone boreal forest. The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean tree diameter increased even as stand density and basal area declined significantly. Tree mortality averaged 1.4±0.6% yr −1 , with most mortality occurring in medium-sized trees; new recruitment was minimal. There have been at least two, and probably three, significant influxes of new trees since stand initiation, but none in recent decades. A combined tree ring chronology constructed from sampling in 2001, 2004, and 2012 showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Higher minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. We suggest that past climate extremes led to significant mortality still visible in the current forest structure, with decadal dynamics superimposed on slower patterns of fire and succession. These results have significant implications for our understanding of previous work at NOBS, the carbon sequestration capability of old-growth stands in a disturbance-prone landscape, and the sustainable management of regional forests in a changing climate. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-09-21
    Description: The 20th century was a pivotal period at high northern latitudes as it marked the onset of a rapid climatic warming brought on by major anthropogenic changes in global atmospheric composition. In parallel, Arctic sea ice extent has been decreasing over the period of available satellite data record. Here we document how these changes influenced vegetation productivity in adjacent eastern boreal North America. To do this, we used normalized difference vegetation index (NDVI) data, model simulations of net primary productivity (NPP), and tree-ring width measurements covering the last 300 years. Climatic and proxy-climatic datasets were used to explore the relationships between vegetation productivity and Arctic sea ice concentration and extent, and temperatures. Results indicate that an unusually large amount of black spruce ( Picea mariana ) trees entered into a period of growth decline during the late 20th century (68% of sampled trees; n = 724 cross-sections of age 〉 70 years). This finding is coherent with evidence encoded in NDVI and simulated NPP data. Analyses of climatic and vegetation productivity relationships indicate that the influence of recent climatic changes in the studied forests has been via the enhanced moisture stress (i.e. greater water demands) and autotrophic respiration amplified by the declining sea ice concentration in the Hudson Bay and Hudson Strait. The recent decline strongly contrasts with other growth reduction events that occurred during the 19 th century, which were associated with cooling and high sea ice severity. The recent decline of vegetation productivity is the first one to occur under circumstances related to excess heat in a 300-year period, and further culminates with an intensifying wildfire regime in the region. Our results concur with observations from other forest ecosystems about intensifying temperature-driven drought stress and tree mortality with ongoing climatic changes. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-09-22
    Description: Lymph nodes are often the first target of metastatic cancer which can then remetastasize to distant organs. The progression of lymph node metastasis is dependent on sufficient blood supply provided by angiogenesis. In the present study, we have developed a color-coded imaging model to visualize angiogenesis of lymph nodes metastasis using green fluorescent protein (GFP) and red fluorescent protein (RFP). Transgenic mice carrying GFP under the control of the nestin second-intron enhancer (ND-GFP mice) were used as hosts. Nascent blood vessels express GFP in these mice. B16F10-RFP melanoma cells were injected into the efferent lymph vessel of the inguinal lymph node of the ND-GFP nude mice, whereby the melanoma cells trafficked to the axillary lymph node. Three days after melanoma implantation, ND-GFP-expressing nascent blood vessels were imaged in the axillary lymph nodes. Seven days after implantation, ND-GFP-expressing nascent blood vessels formed a network in the lymph nodes. ND-GFP-positive blood vessels surrounded the tumor mass by 14 days after implantation. However, by 28 days after implantation, ND-GFP expression was diminished as the blood vessels matured. Treatment with doxorubicin significantly decreased the mean nascent blood vessel length per tumor volume. These results show that the dual-color ND-GFP blood vessels/RFP-tumor model is a powerful tool to visualize and quantitate angiogenesis of metastatic lymph nodes as well as for evaluation of its inhibition. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-09-22
    Description: Spermatogenesis is a special process by which spermatogonial stem cells (SSCs) divide and differentiate to male gametes called mature spermatozoa. SSCs are the unique cells because they are adult stem cells that transmit genetic information to subsequent generations. Accumulating evidence has demonstrated that SSCs can be reprogrammed to acquire pluripotency to become embryonic stem-like cells that differentiate into all cell lineages of the three germ layers, highlighting potential important applications of SSCs for regenerative medicine. Recent studies from peers and us have made great achievements on the characterization, isolation and culture of mouse and human SSCs, which could lead to better understanding the biology of SSCs and the applications of SSCs in both reproductive and regenerative medicine. In this review, we first compared the cell identity and biochemical phenotypes between mouse SSCs and human SSCs. Notably, the cell types of mouse and human SSCs are distinct, and human SSCs share some but not all phenotypes with mouse SSCs. The approaches for isolating SSCs as well as short- and long- term culture of mouse SSCs and short-period culture of human SSCs were also discussed. We further addressed the new advances on the self-renewal of SSCs with an aim to establish the long-term culture of human SSCs which has not yet been achieved. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-09-22
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Assessing trait responses to environmental gradients requires the simultaneous analysis of the information contained in three tables: L (species distribution across samples), R (environmental characteristics of samples) and Q (species traits). Among the available methods, the so-called fourth-corner and RLQ methods are two appealing alternatives that provide a direct way to test and estimate trait-environment relationships. Both methods are based on the analysis of the fourth-corner matrix which crosses traits and environmental variables weighted by species abundances. However, they greatly differ in their outputs: RLQ is a multivariate technique that provides ordination scores to summarize the joint structure among the three tables, whereas the fourth-corner method mainly tests for individual trait-environment relationships (i.e. one trait and one environmental variable at a time). Here, we illustrate how the complementarity between these two methods can be exploited to promote new ecological knowledge and to improve the study of trait-environment relationships. After a short description of each method, we apply them to real ecological data to present their different outputs and provide hints about the gain resulting from their combined use.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-09-26
    Description: Long non-coding RNAs (lncRNAs) have recently gained increasing attention because of their crucial roles in gene regulatory processes. Functional studies using mammalian skin as a model system have revealed their role in controlling normal tissue homeostasis as well as the transition to a diseased state. Here, we describe how lncRNAs regulate differentiation to preserve an undifferentiated epidermal progenitor compartment, and to maintain a functional skin permeability barrier. Furthermore, we will reflect on recent work analyzing the impact of lncRNAs on the progression from normal epithelium to the development of skin disorders and cancer. Long non-coding RNAs (lncRNAs) have recently been shown to control a wide variety of gene regulatory processes. In mammalian skin, lncRNAs appear to regulate the intricate balance between progenitor cells undergoing continual regeneration in the basal layer and highly differentiated cells forming the epidermal permeability barrier.
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-09-27
    Description: Successful species interactions require that both partners share a similar cue. For many species, spring warming acts as a shared signal to synchronize mutualist behaviors. Spring flowering plants and the ants that disperse their seeds respond to warming temperatures so that ants forage when plants drop seeds. However, where warm-adapted ants replace cold-adapted ants, changes in this timing might leave early seeds stranded without a disperser. We investigate plant seed dispersal south and north of a distinct boundary between warm- and cold-adapted ants to determine if changes in the ant species influence local plant dispersal. The warm-adapted ants forage much later than the cold-adapted ants, and so we first assess natural populations of early and late blooming plants. We then transplant these plants south and north of the ant boundary to test whether distinct ant climate requirements disrupt the ant-plant mutualism. Whereas the early blooming plant's inability to synchronize with the warm-adapted ant leaves its populations clumped and patchy and its seedlings clustered around the parents in natural populations, when transplanted into the range of the cold-adapted ant, effective seed dispersal recovers. In contrast, the mutualism persists for the later blooming plant regardless of location because it sets seed later in spring when both warm- and cold-adapted ant species forage, resulting in effective seed dispersal. These results indicate that the climate response of species interactions, not just the species themselves, is integral in understanding ecological responses to a changing climate. Data linking phenological synchrony and dispersal are rare, and these results suggest a viable mechanism by which a species’ range is limited more by biotic than abiotic interactions – despite the general assumption that biotic influences are buried within larger climate drivers. These results show that biotic partner can be as fundamental a niche requirement as abiotic resources. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-10-01
    Description: Lipophorin (Lp) is a major insect lipoprotein and is responsible for lipid transport between organs. In this study, the effect of starvation on Lp properties was analyzed in larval Manduca sexta during the fifth instar. Lp hemolymph concentrations in larvae at days 1 and 2 were around 2–3 mg/ml and at day 3 it increased to 8 mg/ml. When larvae were starved for 24 h, they did not grow, but their body mass and hemolymph volume did not decrease significantly. Differences in Lp densities were observed. In fed larvae, from days 1 to 4, two major Lp populations were found with densities of 1.124 ± 0.002 (high density Lp-larval 1 , HDLp-L 1 ) and 1.141 ± 0.002 g/ml (HDLp-L 2 ). When larvae were starved for 24 h, only one Lp population was present, with density 1.114 ± 0.001 g/ml (HDLp-L s ). When larvae were abdominally ligated at day 1 or 2 of fifth instar, only HDLp-L s was found after 24 h, indicating that the formation of this HDLp population was not dependent on any factor released by head. On the other hand, larvae that were ligated at day 3 showed the same Lp populations as the fed ones. In 24-h starved larvae, lipid load in Lp was higher as compared to the fed controls. In 24-h ligated larvae Lp lipid content increased when ligation was performed on day 1 or 2, but not on day 3. So, different responses to starvation can be observed depending on the developmental phase of the same larval instar.
    Print ISSN: 0739-4462
    Electronic ISSN: 1520-6327
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-10-01
    Description: Increasing ocean temperatures and strengthening boundary currents have caused the poleward migration of many marine species. Cubozoan jellyfish known to cause Irukandji syndrome have historically been confined to tropical waters but may be expanding into sub-tropical regions. Here we examine the interactive effects of warming and acidification on the population dynamics of polyps of an Irukandji jellyfish, Alatina nr mordens, and the formation of statoliths in newly metamorphosed medusae, to determine if this jellyfish could tolerate future conditions predicted for southeast Queensland (SEQ), Australia. Two experiments, examining the orthogonal factors of temperature and pH were undertaken. Experiment 1 mimicked the current, ca. 2050 and ca. 2100 summer temperature and pH conditions predicted for SEQ using A1F1 scenarios (temperature: 25, 27, 29°C; pH: 7.9, 7.8, 7.6) and Experiment 2 mimicked current and future winter conditions (18 and 22°C, pH 7.9, 7.8, 7.6). All polyps in Experiment 1 survived and budded. Fewer polyps budded in the lower pH treatments but patterns varied slightly among temperature treatments. Statoliths at pH 7.6 were 24% narrower than those at pH 7.8 and 7.9. Most polyps survived the winter conditions mimicked by Experiment 2 but only polyps in the 22°C, pH 7.9 treatment increased significantly. The current absence of A . nr mordens medusae in SEQ, despite the polyps’ ability to tolerate the current temperature and pH conditions, suggests that ecological, rather than abiotic factors currently limit their distribution. Observations that budding was lower under low pH treatments suggest that rates of asexual reproduction will likely be much slower in the future. We consider that A . nr mordens polyps are likely to tolerate future conditions but are unlikely to thrive in the long term. However, if polyps can overcome potential ecological boundaries and acidification proceeds slowly A . nr mordens could expand polewards in the short-term. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-10-01
    Description: Soil CO 2 efflux ( F soil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO 2 ] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on F soil are less clear. Expanding on previous studies at the Duke Free Air CO 2 Enrichment (FACE) site, we quantified the effects of elevated [CO 2 ] and N fertilization on F soil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient-unfertilized plots, annual F soil increased under elevated [CO 2 ] (~17%) and decreased with N (~21%). N fertilization under elevated [CO 2 ] reduced F soil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Inter-annually, low soil water content decreased annual F soil from potential values – estimated based on temperature alone assuming non-limiting soil water content – by ~0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO 2 ]. Variability of soil N availability among plots accounted for the spatial variability of F soil , showing a decrease of ~114 g C m -2 y -1 per 1 g m -2 increase in soil N availability, with consistently higher F soil in elevated [CO 2 ] plots ~127 g C per 100 ppm [CO 2 ] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO 2 ] and N fertilization on F soil in this stand are sustained beyond the early stages of stand development and through stabilization of annual foliage production. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-10-01
    Description: To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e. on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH 4 and N 2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N 2 O and yield-scaled N 2 O emissions increased exponentially. In contrast, CH 4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH 4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N 2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer additions. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-10-01
    Description: Climate change is projected to push the limits of cropping systems and has the potential to disrupt the agricultural sector from local to global scales. This article introduces the Coordinated Climate-Crop Modeling Project (C3MP), an initiative of the Agricultural Model Intercomparison and Improvement Project (AgMIP) to engage a global network of crop modelers to explore the impacts of climate change via an investigation of crop responses to changes in carbon dioxide concentration ([CO 2 ]), temperature, and water. As a demonstration of the C3MP protocols and enabled analyses, we apply the Decision Support System for Agrotechnology Transfer (DSSAT) CROPGRO-Peanut crop model for Henry County, Alabama, to evaluate responses to the range of plausible [CO 2 ], temperature changes, and precipitation changes projected by climate models out to the end of the 21 st century. These sensitivity tests are used to derive crop model emulators that estimate changes in mean yield and the coefficient of variation for seasonal yields across a broad range of climate conditions, reproducing mean yields from sensitivity test simulations with deviations of ~2% for rainfed conditions. We apply these statistical emulators to investigate how peanuts respond to projections from various global climate models, time periods, and emissions scenarios, finding a robust projection of modest (〈10%) median yield losses in the middle of the 21 st century accelerating to more severe (〉20%) losses and larger uncertainty at the end of the century under the more severe representative concentration pathway 8.5. This projection is not substantially altered by the selection of the AgMERRA global gridded climate dataset rather than the local historical observations, differences between the Third and Fifth Coupled Model Intercomparison Project (CMIP3 and CMIP5), or the use of the delta method of climate impacts analysis rather than the C3MP impacts response surface and emulator approach. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-10-01
    Description: Large-scale, long-term FACE (Free Air CO 2 -enrichment) experiments indicate that increases in atmospheric CO 2 concentrations will influence forest C cycling in unpredictable ways. It has been recently suggested that responses of mycorrhizal fungi could determine whether forest NPP (net primary production) is increased by elevated CO 2 over long time periods and if forests soils will function as sources or sinks of C in the future. We studied the dynamic responses of ectomycorrhizae to N fertilization and atmospheric CO 2 -enrichment at the Duke FACE experiment using minirhizotrons over a six year period (2005-2010). Stimulation of mycorrhizal production by elevated CO 2 was observed during only one (2007) of six years. This increased the standing crop of mycorrhizal tips during 2007 and 2008; during 2008, significantly higher mortality returned standing crop to ambient levels for the remainder of the experiment. It is therefore unlikely that increased production of mycorrhizal tips can explain the lack of progressive nitrogen limitations and associated increases in N uptake observed in CO 2 -enriched plots at this site. Fertilization generally decreased tree reliance on mycorrhizae as tip production declined with the addition of nitrogen as has been shown in many other studies. Annual NPP of mycorrhizal tips was greatest during years with warm January temperatures and during years with cool spring temperatures. A 2° C increase in average late spring temperatures (May and June) decreased annual production of mycorrhizal root tip length by 50%. This has important implications for ecosystem function in a warmer world in addition to potential for forest soils to sequester atmospheric C. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-10-01
    Description: Permafrost thaw in the Arctic driven by climate change is mobilizing ancient terrigenous organic carbon (OC) into fluvial networks. Understanding the controls on metabolism of this OC is imperative for assessing its role with respect to climate feedbacks. In this study we examined the effect of inorganic nutrient supply and dissolved organic matter (DOM) composition on aquatic extracellular enzyme activities (EEAs) in waters draining the Kolyma River Basin (Siberia), including permafrost derived OC. Reducing the phenolic content of the DOM pool resulted in dramatic increases in hydrolase EEAs (e.g. phosphatase activity increased 〉 28 fold) supporting the idea that high concentrations of polyphenolic compounds in DOM (e.g. plant structural tissues) inhibit enzyme synthesis or activity, limiting OC degradation. EEAs were significantly more responsive to inorganic nutrient additions only after phenolic inhibition was experimentally removed. In controlled mixtures of modern OC and thawed permafrost endmember OC sources, respiration rates per unit dissolved OC were 1.3 – 1.6 times higher in waters containing ancient carbon, suggesting that permafrost derived OC was more available for microbial mineralization. In addition, waters containing ancient permafrost derived OC supported elevated phosphatase and glucosidase activities. Based on these combined results, we propose that both composition and nutrient availability regulates DOM metabolism in Arctic aquatic ecosystems. Our empirical findings are incorporated into a mechanistic conceptual model highlighting two key enzymatic processes in the mineralization of riverine OM: 1) the role of phenol oxidase activity in reducing inhibitory phenolic compounds; and 2) the role of phosphatase in mobilizing organic P. Permafrost derived DOM degradation was less constrained by this initial “phenolic-OM” inhibition; thus, informing reports of high biological availability of ancient, permafrost derived DOM with clear ramifications for its metabolism in fluvial networks and feedbacks to climate. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-10-01
    Description: [1]  Mountain pine beetle ( Dendroctonus ponderosae ) outbreaks in North America are widespread and have potentially-large scale impacts on albedo and associated radiative forcing. Mountain pine beetle outbreaks in Colorado and southern Wyoming have resulted in persistent and significant increases in both winter albedo (change peaked 10 years post-outbreak at 0.06 ± 0.01 and 0.05 ± 0.01, in lodgepole pine ( Pinus contorta ) and ponderosa pine ( Pinus ponderosa ) stands, respectively) and spring albedo (change peaked 10 years post-outbreak at 0.06 ± 0.01 and 0.04 ± 0.01, in lodgepole pine and ponderosa pine stands, respectively). Instantaneous top-of-atmosphere radiative forcing peaked for both lodgepole pine and ponderosa pine stands in winter at 10 years post-outbreak at −1.7 ± 0.2 W m -2 and −1.4 ± 0.2 W m -2 , respectively. The persistent increase in albedo with time since mountain pine beetle disturbance combined with the continued progression of the attack across the landscape from 1994–2011, resulted in an exponential increase in winter and annual radiative cooling (MW) over time. In 2011 the rate of radiative forcing within the study area reached −982.7 ± 139.0 MW, -269.8 ± 38.2 MW, -31.1 ± 4.4 MW and −147.8 ± 20.9 MW in winter, spring, summer and fall, respectively. An increase in radiative cooling has the potential to decrease sensible and/or latent heat flux by reducing available energy. Such changes could affect current mountain pine beetle outbreaks which are influenced by climatic conditions.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-10-02
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Insect mutualisms can have disproportionately large impacts on local arthropod and plant communities and their responses to climatic change. The objective of this study was to determine if the presence of insect mutualisms affects host plant and herbivore responses to warming. Using open-top warming chambers at Harvard Forest, MA, USA, we manipulated temperature and presence of ants and Chaitophorus populicola aphids on Populus tremuloides host plants and monitored ant attendance and persistence of C. populicola, predator abundance, plant stress, and abundance of Myzus persicae, a pest aphid that colonized plants during the experiment. We found that, regardless of warming, C. populicola persistence was higher when tended by ants, and some ant species increased aphid persistence more than others. Warming had negligible direct but strong indirect effects on plant stress. Plant stress decreased with warming only when both ants and C. populicola aphids were present and engaged in mutualism. Plant stress was increased by warming- induced reductions in predator abundance and increases in M. persicae aphid abundance. Altogether, these findings suggest that insect mutualisms could buffer the effects of warming on specialist herbivores and plants, but, when mutualisms are not intact, the direct effects of warming on predators and generalist herbivores yield strong indirect effects of warming on plants.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-10-02
    Description: Ecosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO 2 ) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevated CO 2 are equally important to the regulation of phytoplankton biomass. We full-factorially exposed three compositionally different marine phytoplankton communities to two different CO 2 levels and examined the effects and relative importance (ω 2 ) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevated CO 2 on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevated CO 2 selected for larger sized diatoms, which led to increased total phytoplankton biomass. Our study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevated CO 2 potentially has strong implications for nutrient cycling and carbon export in future oceans. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-10-02
    Description: Less than half of anthropogenic carbon emissions are accumulating in the atmosphere, due to large net fluxes into both the oceans and the land (Le Queré et al., 2012). The land sink in particular has increased markedly, doubling in strength since the 1960's, to reach 26 petagrams of carbon in the latest decade. However, the location and drivers of this large terrestrial sink are still relatively poorly constrained by atmospheric measurements (Ciais et al. 2013). Pan et al. (2011) recently utilised 〉1 million forest inventory plots to provide summaries of forest carbon stocks, and the first global bottom-up estimates of carbon fluxes for the world's forest biomes for the period 1990-2007. One key result was that almost all the residual global terrestrial carbon sink (i.e. carbon uptake after accounting for land use change), some 2.4 ± 0.4 Pg of carbon per year, is located in the world's established forests (Pan et al., 2011). The sink is distributed worldwide, with globally significant net fluxes into boreal and temperate forests, and a large sink in intact tropical forest, albeit with large uncertainty. Furthermore, Pan et al. (2011) showed that this tropical intact forest sink - may have faded from an estimated annual 1.3 ± 0.4 Pg C in the 1990's to 1.0 ± 0.5 Pg C for 2000-2007. The tropical intact sink is offset by a net land-use emission (1.5 Pg C yr −1 [1990-1999]) declining to 1.1 Pg C yr −1 [2000-2007]), and as a consequence aircraft measurements and inverse modelling studies indicate the tropics to be close to neutral in terms of net carbon fluxes (reviewed by Ciais et al. 2013). While the intact tropical forest sink values represent updates from similar values published previously (e.g., Lewis et al., 2009a), the fact that almost the entire residual terrestrial carbon sink is accounted for by the forests of the world was a notable discovery. Evidence from the ground now points to established forests being a net sink across almost every major forest region, including all extra-tropical forest regions analysed. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-10-02
    Description: Forecasting how global warming will affect onset of the growing season is essential for predicting terrestrial productivity, but suffers from conflicting evidence. We show that accurate estimates require ways to connect discrete observations of changing tree status (e.g., pre- vs. post-budbreak) with continuous responses to fluctuating temperatures. By coherently synthesizing discrete observations with continuous responses to temperature variation, we accurately quantify how increasing temperature variation accelerates onset of growth. Application to warming experiments at two latitudes demonstrates that maximum responses to warming are concentrated in late winter, weeks ahead of the main budbreak period. Given that warming will not occur uniformly over the year, knowledge of when temperature variation has the most impact can guide prediction. Responses are large and heterogeneous, yet predictable. The approach has immediate application to forecasting effects of warming on growing season length, requiring only information that is readily available from weather stations and generated in climate models. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-10-02
    Description: Climate change is expected to cause geographic redistributions of species. To the extent that species within assemblages have different niche requirements, assemblages may no longer remain intact and dis- and reassemble at current or new geographic locations. We explored how climate change projected by 2100 may transform the world's avian assemblages (characterized at a 110 km spatial grain) by modelling environmental niche-based changes to their dietary guild structure under 0 km, 500 km, and 2000 km dispersal distances. We examined guild structure changes at coarse (primary, high-level, and mixed consumers) and fine (frugivores, nectarivores, insectivores, herbivores, granivores, scavengers, omnivores, and carnivores) ecological resolutions to determine whether or not geographic co-occurrence patterns among guilds were associated with the magnitude to which guilds are functionally resolved. Dietary guilds vary considerably in their global geographic prevalence, and under broad-scale niche-based redistribution of species, these are projected to change very heterogeneously. A non-dispersal assumption results in the smallest projected changes to guild assemblages, but with significant losses for some regions and guilds, such as South American insectivores. Longer dispersal distances are projected to cause greater degrees of disassembly, and lead to greater homogenization of guild composition, especially in northern Asia and Africa. This arises because projected range gains and losses result in geographically heterogeneous patterns of guild compensation. Projected decreases especially of primary and mixed consumers most often are compensated by increases in high-level consumers, with increasing uncertainty about these outcomes as dispersal distance and degree of guild functional resolution increases. Further exploration into the consequences of these significant broad-scale ecological functional changes at the community or ecosystem level should be increasingly on the agenda for conservation science. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-10-02
    Description: Climate change scenarios predict increases in the frequency and duration of ENSO-related droughts for parts of South-East Asia until the end of this century exposing the remaining rainforests to increasing drought risk. A pan-tropical review of recorded drought-related tree mortalities in more than 100 monitoring plots before, during and after drought events suggested a higher drought-vulnerability of trees in South-East Asian than in Amazonian forests. Here, we present the results of a replicated (n=3 plots) throughfall exclusion experiment in a perhumid tropical rainforest in Sulawesi, Indonesia. In this first large-scale roof experiment outside semi-humid eastern Amazonia, 60% of the throughfall was displaced during the first 8 months and 80% during the subsequent 17 months, exposing the forest to severe soil desiccation for about 17 months. In the experiment's second year, wood production decreased on average by 40% with largely different responses of the tree families (ranging from -100 to +100% change). Most sensitive were trees with high radial growth rates under moist conditions. In contrast, tree height was only a secondary factor and wood specific gravity had no influence on growth sensitivity. Fine root biomass was reduced by 35% after 25 months of soil desiccation while fine root necromass increased by 250% indicating elevated fine root mortality. Cumulative aboveground litter production was not significantly reduced in this period. The trees from this Indonesian perhumid rainforest revealed similar responses of wood and litter production and root dynamics as those in two semi-humid Amazonian forests subjected to experimental drought. We conclude that trees from paleo- or neotropical forests growing in semi-humid or perhumid climates may not differ systematically in their growth sensitivity and vitality under sub-lethal drought stress. Drought vulnerability may depend more on stem cambial activity in moist periods than on tree height or wood specific gravity. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-10-02
    Description: Soil microbial communities in Chihuahuan Desert grasslands generally experience highly variable spatiotemporal rainfall patterns. Changes in precipitation regimes can affect belowground ecosystem processes such as decomposition and nutrient cycling by altering soil microbial community structure and function. The objective of this study was to determine if increased seasonal precipitation frequency and magnitude over a seven-year period would generate a persistent shift in microbial community characteristics and soil nutrient availability. We supplemented natural rainfall with large events (one/winter and three/summer) to simulate increased precipitation based on climate model predictions for this region. We observed a two year delay in microbial responses to supplemental precipitation treatments. In Years 3-5, higher microbial biomass, arbuscular mycorrhizae abundance, and soil enzyme C and P acquisition activities were observed in the supplemental water plots even during extended drought periods. In Years 5-7, available soil P was consistently lower in the watered plots compared to control plots. Shifts in soil P corresponded to higher fungal abundances, microbial C utilization activity, and soil pH. This study demonstrated that 25% shifts in seasonal rainfall can significantly influence soil microbial and nutrient properties, which in turn may have long-term effects on nutrient cycling and plant P uptake in this desert grassland. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-10-02
    Description: It is proposed that increases in anthropogenic reactive nitrogen (N r )-deposition may cause temperate and boreal forests to sequester a globally significant quantity of carbon (C); however, long-term data from boreal forests describing how C sequestration responds to realistic levels of chronic N r -deposition are scarce. Using a long term (14-year) stand scale (0.1 ha) N-addition experiment (three levels: 0, 12.5, and 50 kg N ha −1 yr −1 ) in the boreal zone of northern Sweden, we evaluated how chronic N additions altered N uptake and biomass of understory communities, and whether changes in understory communities explained N uptake and C sequestration by trees. We hypothesized that understory communities (i.e. mosses and shrubs) serve as important sinks for low-level N additions, with the strength of these sinks weakening as chronic N addition rates increase, due to shifts in species composition. We further hypothesized that trees would exhibit non-linear increases in N acquisition, and subsequent C sequestration as N addition rates increased, due to a weakening understory N sink. Our data showed that understory biomass was reduced by 50% in response to the high N addition treatment, mainly due to reduced moss biomass. A 15 N labelling experiment showed that feather mosses acquired the largest fraction of applied label, with this fraction decreasing as the chronic N addition level increased. Contrary to our hypothesis, the proportion of label taken up by trees was equal (~8%) across all three N addition treatments. The relationship between N addition and C sequestration in all vegetation pools combined was linear, and had a slope of 16 kg C kg −1 N. While canopy retention of N r deposition may cause C sequestration rates to be slightly different than this estimate, our data suggests that a minor quantity of annual anthropogenic CO 2 emissions are sequestered into boreal forests as a result of N r deposition. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-10-02
    Description: Urbanization is one of the most extensive and ecologically significant changes happening to terrestrial environments, as it strongly affects the distribution of biodiversity. It is well established that native species richness is reduced in urban and suburban areas, but the species traits that predict tolerance to urbanization are yet little understood. In birds, one of the most studied groups in this respect, evidence is appearing that acoustic traits influence urban living, but it is unknown how this compares to the effects of more obvious ecological traits that facilitate urban living. Therefore, it remains unclear whether acoustic communication is an important predictor of urban tolerance among species. Here, with a comparative study across 140 European and North American passerines, I show that high song frequency, which is less masked by the low-frequency anthropogenic noise, is associated with urban tolerance, with an effect size over half that of the most important ecological trait studied: off-ground nesting. Other nesting and foraging traits accepted to facilitate urban living did not differ for species occurring in urban environments. Thus, the contribution of acoustic traits for passerine urban tolerance approximates that of more obvious ecological traits. Nonetheless, effect sizes of the biological predictors of urban tolerance were low and the phylogenetic signal for urban tolerance was null, both of which suggest that factors other than phenotypic traits have major effects on urban tolerance. A simple possibility is exposure to urbanization, since there was a higher proportion of urban-tolerant species in Europe, which is more urbanized than North America. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-10-03
    Description: Ecological Applications, Volume 0, Issue 0, Ahead of Print. Efforts to test and improve terrestrial biosphere models (TBMs) using a variety of data sources have become increasingly common. However, geographically extensive forest inventories have been under-exploited in previous model-data fusion efforts. Inventory observations of forest growth, mortality, and biomass integrate processes across a range of time scales, including slow time-scale processes such as species turnover, that are likely to have important effects on ecosystem responses to environmental variation. However, the large number (thousands) of inventory plots precludes detailed measurements at each location, so that uncertainty in climate, soil properties, and other environmental drivers may be large. Errors in driver variables, if ignored, introduce bias into model-data fusion. We estimated errors in climate and soil drivers at U.S. Forest Inventory and Analysis (FIA) plots, and we explored the effects of these errors on model-data fusion with the Geophysical Fluid Dynamics Laboratory LM3V dynamic global vegetation model. When driver errors were ignored or assumed small at FIA plots, responses of biomass production in LM3V to precipitation and soil available water capacity appeared steeper than the corresponding responses estimated from FIA data. These differences became non-significant if driver errors at FIA plots were assumed large. Ignoring driver errors when optimizing LM3V parameter values yielded estimates for fine-root allocation that were larger than biometric estimates, which is consistent with the expected direction of bias. To explore if complications posed by driver errors could be circumvented by relying on intensive study sites where driver errors are small, we performed a power analysis. To accurately quantify the response of biomass production to spatial variation in mean annual precipitation within the eastern U.S. would require at least 40 intensive study sites, which is larger than the number of sites typically available for individual biomes in existing plot networks. Driver errors may be accommodated by several existing model-data fusion approaches, including hierarchical Bayesian methods and ensemble filtering methods; however, these methods are computationally expensive. We propose a new approach, in which the TBM functional response is fit directly to the driver-error-corrected functional response estimated from data, rather than to the raw observations.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-10-03
    Description: Ecological Applications, Volume 0, Issue 0, Ahead of Print. Much of our understanding of natural forest dynamics in the temperate region of Europe is based on observational studies in old-growth remnants that have emphasized small-scale gap dynamics and equilibrium stand structure and composition. Relatively little attention has been given to the role of infrequent disturbance events in forest dynamics. In this study, we analyzed dendroecological data from four stands and three windthrow patches in an old-growth landscape in the Dinaric Mountains of Bosnia and Herzegovina to examine disturbance history, tree life history traits, and compositional dynamics. Over all stands, most decades during the past 340 years experienced less than 10% canopy loss, yet each stand showed evidence of periodic intermediate severity disturbances that removed 〉 40% of the canopy, some of which were synchronized over the study area landscape. Analysis of radial growth patterns indicated several life history differences among the dominant canopy trees; beech was markedly older than fir, while growth patterns of dead and dying trees suggested fir was able to tolerate longer periods of suppressed growth in shade. Maple had the fastest radial growth and accessed the canopy primarily through rapid early growth in canopy gaps, whereas most beech and fir experienced a period of suppressed growth prior to canopy accession. Peaks in disturbance were roughly linked to increased recruitment, but mainly of shade tolerant beech and fir; less tolerant species (i.e. maple, ash, and elm) recruited successfully on some of the windthown sites where advance regeneration of beech and fir was less abundant. The results challenge the traditional notions of stability in temperate old-growth of Europe and highlight the non-equilibrial nature of canopy composition due to unique histories of disturbance and tree life history differences. These findings provide valuable information for developing natural disturbance-based silvicultural systems, as well as insight into maintaining less shade tolerant, but valuable broadleaved trees in temperate forests of Europe.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-10-03
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. The processes that structure assemblages of species in hyper-diverse genera, such as Ficus (Moraceae), are not well understood. Functional diversity of co-occurring species can reveal evidence for assembly processes; however, intraspecific variation may weaken species-level patterns. We studied whether functional and phylogenetic diversity of Ficus species indicated the effects of spatial variation in filters associated with topography or niche partitioning related to resource use and biotic interactions. We also asked whether individual trait patterns supported species-level patterns. We studied six traits (leaf area, succulence, specific leaf area: SLA, maximum DBH, fruit size, and latex exudation) for 22 Ficus species and 335 individuals {greater than or equal to} 10 cm DBH on a 20-ha forest plot in China. We found that higher elevation was correlated to changes in mean and reduced diversity of five traits, possibly due to frequent disturbances at higher elevations that favored fast-growing, poorly defended species with high SLA. Maximum DBH showed phylogenetic conservatism but high diversity among co-occurring species, suggesting adult stature is an important axis of within-quadrat niche partitioning. At the individual level, trait patterns were qualitatively consistent but were stronger than species-level patterns, especially for the leaf traits with the greatest intraspecific variation (SLA and succulence). Individual-level SLA exhibited the strongest evidence for both among and within-quadrat niche partitioning and indicated elevational filtering. Local niche partitioning and elevational filtering likely play an important role in maintaining species and functional diversity in the most speciose genus at our study site. Our results highlight the importance of individual variation, as it may reveal otherwise obscured niche effects.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-10-03
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. Inputs of terrestrial organic carbon (t-OC) into lakes are often considered a resource subsidy for aquatic consumer production. Although there is evidence that terrestrial carbon can be incorporated into the tissues of aquatic consumers, its ability to enhance consumer production has been debated. Our research aims to evaluate the net effect of t-OC input on zooplankton. We used a survey of zooplankton production and resource use in ten lakes along a naturally occurring gradient of t-OC concentration to address these questions. Total and group-specific zooplankton production was negatively related to t-OC. Residual variation in zooplankton production that was not explained by t-OC was negatively related to terrestrial resource use (allochthony) by zooplankton. These results challenge the designation of terrestrial carbon as a resource subsidy; rather, the negative effect of reduced light penetration on the amount of suitable habitat and the low resource quality of t-OC appear to diminish zooplankton production. Our findings suggest that ongoing continental-scale increases in t-OC concentrations of lakes will likely have negative impacts on the productivity of aquatic food webs.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-10-03
    Description: Cuticular proteins (CPs) are key components of insect cuticle, a structure that plays a pivotal role in insect development and defense. In this study, we cloned the full-length cDNA of a CP gene from Apis cerana cerana ( AccCPR24 ). An amino acid sequence alignment indicated that AccCPR24 contains the conserved Rebers and Riddiford consensus sequence and shares high similarity with the genes from other hymenopteran insects. We then isolated the genomic DNA and found that the first intron, which is present in other CP genes, is absent in AccCPR24 . Real-time quantitative polymerase chain reaction (qPCR) analysis revealed that AccCPR24 is highly expressed in the late pupal stage and midgut. Expression was inhibited by an exogenous ecdysteroid in vitro but was enhanced by this hormone in vivo; environmental stressors, such as heavy metals and pesticides, also influenced gene expression. In addition, a disc diffusion assay showed that AccCPR24 enhanced the ability of bacterial cells to resist multiple stresses. We infer from our results that AccCPR24 acts in honeybee development and in protecting these insects from abiotic stresses.
    Print ISSN: 0739-4462
    Electronic ISSN: 1520-6327
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...