ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
  • AGU  (1)
  • Intech  (1)
  • Nature Publishing Group  (1)
  • 2010-2014  (3)
  • 1980-1984
  • 1960-1964
  • 1925-1929
Collection
Years
  • 2010-2014  (3)
  • 1980-1984
  • 1960-1964
  • 1925-1929
Year
  • 1
    Publication Date: 2017-04-04
    Description: The occurrence of particle aggregation has a dramatic effect on the transport and sedimentation of volcanic ash. The aggregation process is complex and can occur under different conditions and in multiple regions of the plume and in the ash cloud. In the companion paper, Costa et al. develop an aggregation model based on a fractal relationship to describe the rate particles are incorporated into ash aggregates. The model includes the effects of both magmatic and atmospheric water present in the volcanic cloud and demonstrates that the rate of aggregation depends on the characteristics of the initial particle size distribution. The aggregation model includes two parameters, the fractal exponent Df, which describes the efficiency of the aggregation process, and the aggregate settling velocity correction factor ye, which influences the distance at which distal mass deposition maxima form. Both parameters are adjusted using features of the observed deposits. Here this aggregation model is implemented in the FALL3D volcanic ash transport model and applied to the 18 May 1980 Mount St. Helens and the 17–18 September 1992 Crater Peak eruptions. For both eruptions, the optimized values for Df (2.96–3.00) and ye (0.27–0.33) indicate that the ash aggregates had a bulk density of 700–800 kg m−3. The model provides a higher degree of agreement than previous fully empirical aggregation models and successfully reproduces the depositional characteristics of the deposits investigated over a large range of scales, including the position and thickness of the secondary maxima.
    Description: Published
    Description: B09202
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic ash ; particle aggregation ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The chapter is organized as follows. Section 2 will introduce the similarity matching problem on time series. We will note the importance of the use of efficient data structures to perform search, and the choice of an adequate distance measure. Section 3 will show some of the most used distance measure for time series data mining. Section 4 will review the above mentioned dimensionality reduction techniques.
    Description: Published
    Description: 71-96
    Description: open
    Keywords: data mining ; knowledge discovery ; Similarity Measures ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Improving lava flow hazard assessment is one of the most important and challenging fields of volcanology, and has an immediate and practical impact on society. Here, we present a methodology for the quantitative assessment of lava flow hazards based on a combination of field data, numerical simulations and probability analyses. With the extensive data available on historic eruptions of Mt. Etna, going back over 2000 years, it has been possible to construct two hazard maps, one for flank and the other for summit eruptions, allowing a quantitative analysis of the most likely future courses of lava flows. The effective use of hazard maps of Etna may help in minimizing the damage from volcanic eruptions through correct land use in densely urbanized area with a population of almost one million people. Although this study was conducted on Mt. Etna, the approach used is designed to be applicable to other volcanic areas.
    Description: This work was developed within the framework of TecnoLab, the Laboratory for Technological Advance in Volcano Geophysics organized by INGV-CT, DIEES-UNICT, and DMI-UNICT.
    Description: Published
    Description: 3493
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: Lava flow hazard ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...