ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6)
  • 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects  (4)
  • 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes  (1)
  • Egypt
  • Copernicus  (3)
  • University of Patras, Greece  (2)
  • American Association for the Advancement of Science
  • 2010-2014  (6)
  • 1980-1984
  • 1965-1969
  • 1925-1929
Collection
  • Articles  (6)
Years
  • 2010-2014  (6)
  • 1980-1984
  • 1965-1969
  • 1925-1929
  • 2005-2009  (2)
Year
  • 1
    Publication Date: 2020-12-21
    Description: BREVIA
    Description: We report on the discovery in southern Egypt of an impact crater 45 m in diameter with a pristine rayed structure. Such pristine structures have been previously observed only on atmosphereless rocky or icy planetary bodies in the Solar System. This feature and the association with an iron meteorite impactor and shock metamorphism provides a unique picture of small-scale hypervelocity impacts on the Earth's crust. Contrary to current geophysical models, ground data indicate that iron meteorites with masses of the order of tens of tons can penetrate the atmosphere without significant fragmentation.
    Description: Published
    Description: 804
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: open
    Keywords: Impact crater ; Egypt ; geophysical exploration ; ataxite ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-14
    Description: Methane plays an important role in the Earth’s atmospheric chemistry and radiative balance being the most important greenhouse gas after carbon dioxide. It has recently been established that geogenic gases contribute significantly to the natural CH4 flux to the atmosphere (Etiope et al., 2008). Volcanic/geothermal areas contribute to this flux, being the site of widespread diffuse degassing of endogenous gases (Chiodini et al., 2005). In such an environment soils are a source rather than a sink for atmospheric CH4 (Cardellini et al., 2003; Castaldi and Tedesco, 2005; D’Alessandro et al., 2009; 2011; 2013). Due to the fact that methane soil flux measurements are laboratory intensive, very few data have been collected until now in these areas. Preliminary studies (Etiope et al., 2007) estimated a total CH4 emission from European geothermal and volcanic systems in the range 4-16 kt a-1. This estimate was obtained indirectly from CO2 or H2O output data and from CO2/CH4 or H2O/CH4 values measured in the main gaseous manifestations. Such methods, although acceptable to obtain order-of-magnitude estimates, completely disregard possible methanotrophic activity within the soil. At the global scale, microbial oxidation in soils contributes for about 3-9% to the total removal of methane from the atmosphere. But the importance of methanotrophic organisms is even larger because they oxidise the greatest part of the methane produced in the soil and in the subsoil before its emission to the atmosphere. Environmental conditions in the soils of volcanic/geothermal areas (i.e. low oxygen content, high temperature and proton activity, etc.) have been considered inadequate for methanotrophic microrganisms. But recently, it has been demonstrated that methanotrophic consumption in soils occurs also under such harsh conditions due to the presence of acidophilic and thermophilic Verrucomicrobia. These organisms were found in Italy at the Solfatara di Pozzuoli (Pol et al., 2007), in New Zealand at Hell’s Gate (Dunfield et al., 2007) and in Kamchatka, Russia (Islam et al., 2008). Both the Italian and the Hellenic territories are geodynamically very active with many active volcanic and geothermal areas. Here we report on methane flux measurements made at Pantelleria (Italy) and at Sousaki and Nisyros (Greece). The total methane output of these three systems is about 10, 19 and 1 t a-1, respectively (D’Alessandro et al., 2009; 2011; 2013). The total emissions obtained from methane flux measurements are up to one order of magnitude lower than those obtained through indirect estimations. Clues of methanotrophic activity within the soils of these areas can be found in the CH4/CO2 ratio of the flux measurements which is always lower than that of the respective fumarolic manifestations, indicating a loss of CH4 during the travel of the gases towards earth’s surface. Furthermore laboratory methane consumption experiments made on soils collected at Pantelleria and Sousaki revealed, for most samples, CH4 consumption rates up to 9.50 µg h-1 and 0.52 µg h-1 respectively for each gram of soil (dry weight). Only few soil samples displayed no methane consumption activity. Finally, microbiological and molecular investigations allowed us to identify the presence of methanotrophic bacteria belonging to the Verrucomicrobia and to the Alpha- and Gamma-Proteobacteria in the soils of the geothermal area of Favara Grande at Pantelleria. While the presence of the former was not unexpected due to the fact that they include acidophilic and thermophilic organisms that were previously found in other geothermal environments, the latter are generally considered not adapted to live in harsh geothermal environments. Their presence in the soils of Pantelleria could be explained by the fact that these soils do not have extremely low pH values (〉5). Indeed thermotollerant methanotrophic Gamma-proteobacteria, have been previously found in the sediments of thermal springs in Kamchatka (Kizilova et al., 2012). Such species could find their niches in the shallowest part of the soils of Favara Grande were the temperatures are not so high and they thrive on the abundant upraising hydrothermal methane.
    Description: Published
    Description: Patras, Greece
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: soil methane fluxes ; methanotrophic activity ; geothermal areas ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Methane plays an important role in the Earth’s atmospheric chemistry and radiative balance being the second most important greenhouse gas after carbon dioxide. Methane is released to the atmosphere by a wide number of sources, both natural and anthropogenic, with the latter being twice as large as the former (IPCC, 2007). It has recently been established that significant amounts of geological methane, produced within the Earth’s crust, are currently released naturally into the atmosphere (Etiope, 2004). Active or recent volcanic/geothermal areas represent one of these sources of geological methane. But due to the fact that methane flux measurements are laboratory intensive, very few data have been collected until now and the contribution of this source has been generally indirectly estimated (Etiope et al., 2007). The Greek territory is geodynamically very active and has many volcanic and geothermal areas. Here we report on methane flux measurements made at two volcanic/geothermal systems along the South Aegean volcanic arc: Sousaki and Nisyros. The former is an extinct volcanic area of Plio-Pleistocene age hosting nowadays a low enthalpy geothermal field. The latter is a currently quiescent active volcanic system with strong fumarolic activity due to the presence of a high enthalpy geothermal system. Both systems have gas manifestations that emit significant amounts of hydrothermal methane and display important diffuse carbon dioxide emissions from the soils. New data on methane isotopic composition and higher hydrocarbon contents point to an abiogenic origin of the hydrothermal methane in the studied systems. Measured methane flux values range from –48 to 29,000 (38 sites) and from –20 to 1100 mg/mˆ2/d (35 sites) at Sousaki and Nisyros respectively. At Sousaki measurement sites covered almost all the degassing area and the diffuse methane output can be estimated in about 20 t/a from a surface of about 10,000 mˆ2. At Nisyros measurements covered the Stephanos and Kaminakia areas, which represent only a part of the entire degassing area. The two areas show very different methane degassing pattern with latter showing much higher flux values. Methane output can be estimated in about 0.25 t/a from an area of about 30,000 mˆ2 at Stephanos and about 1 t/a from an area of about 20,000 mˆ2 at Kaminakia. The total output from the entire geothermal system of Nisyros probably should not exceed 2 t/a.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: methane output ; diffuse degassing ; volcanic/hydrothermal systems ; Greece ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: A biomonitoring survey, above tree line level, using two endemic species (Senecio aethnensis and Rumex aethnensis) was performed on Mt. Etna, in order to evaluate the dispersion and the impact of volcanic atmospheric emissions. Samples of leaves were collected in summer 2008 from 30 sites in the upper part of the volcano (1500- 3000 m a.s.l). Acid digestion of samples was carried out with a microwave oven, and 44 elements were analyzed by using plasma spectrometry (ICP-MS and ICP-OES). The highest concentrations of all investigated elements were found in the samples collected closest to the degassing craters, and in the downwind sector, confirming that the eastern flank of Mt. Etna is the most impacted by volcanic emissions. Leaves collected along two radial transects from the active vents on the eastern flank, highlight that the levels of metals decrease one or two orders of magnitude with increasing distance from the source. This variability is higher for volatile elements (As, Bi, Cd, Cs, Pb, Sb, Tl) than for more refractory elements (Al, Ba, Sc, Si, Sr, Th, U). The two different species of plants do not show significant differences in the bioaccumulation of most of the analyzed elements, except for lanthanides, which are systematically enriched in Rumex leaves. The high concentrations of many toxic elements in the leaves allow us to consider these plants as highly tolerant species to the volcanic emissions, and suitable for biomonitoring researches in the Mt. Etna area.
    Description: Published
    Description: Vienna, Austria
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Mt. Etna ; biomonitoring ; Trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Etna volcano, Italy, hosts one of the major groundwater systems of the island of Sicily. Waters circulate within highly permeable fractured, mainly hawaiitic, volcanic rocks. Aquifers are limited downwards by the underlying impermeable sedimentary terrains. Thickness of the volcanic rocks generally does not exceed some 300 m, preventing the waters to reach great depths. This is faced by short travel times (years to tens of years) and low thermalisation of the Etnean groundwaters. Measured temperatures are, in fact, generally lower than 25 °C. But the huge annual meteoric recharge (about 0.97 kmˆ3) with a high actual infiltration coefficient (0.75) implies a great underground circulation. During their travel from the summit area to the periphery of the volcano, waters acquire magmatic heat together with volcanic gases and solutes through water-rock interaction processes. In the last 20 years the Etnean aquifers has been extensively studied. Their waters were analysed for dissolved major, minor and trace element, O, H, C, S, B, Sr and He isotopes, and dissolved gas composition. These data have been published in several articles. Here, after a summary of the obtained results, the estimation of the magmatic heat flux through the aquifer will be discussed. To calculate heat uptake during subsurface circulation, for each sampling point (spring, well or drainage gallery) the following data have been considered: flow rate, water temperature, and oxygen isotopic composition. The latter was used to calculate the mean recharge altitude through the measured local isotopic lapse rate. Mean recharge temperatures, weighted for rain amount throughout the year, were obtained from the local weather station network. Calculations were made for a representative number of sampling points (216) including all major issues and corresponding to a total water flow of about 0.315 kmˆ3/a, which is 40% of the effective meteoric recharge. Results gave a total energy output of about 140 MW/a the half of which is ascribable to only 13 sampling points. These correspond to the highest flow drainage galleries with fluxes ranging from 50 to 1000 l/s and wells with pumping rates from 70 to 250 l/s. Geographical distribution indicates that, like magmatic gas leakage, heat flow is influenced by structural features of the volcanic edifice. The major heat discharge through groundwater are all tightly connected either to the major regional tectonic systems or to the major volcanic rift zones along which the most important flank eruptions take place. But rift zones are much more important for heat upraise due to the frequent dikes injection than for gas escape because generally when dikes have been emplaced the structure is no more permeable to gases because it becomes sealed by the cooling magma.
    Description: Published
    Description: Vienna, Austria
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: groundwaters ; volcanic surveillance ; water chemistry ; dissolved gases ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Emissions of volcanoes and their depositions do have an immediate impact on their surrounding environment. In the present study, emissions and depositions of the active volcanic and geothermal system Vulcano (Italy) were investigated by active moss biomonitoring (Fig. 1) in the spring of 2012. Sphagnum moss bags were exposed for periods of 3 days, 3, 6 and 9 weeks. Soil and rainwater samples as well as meteorological data were also collected. After exposure, mosses were oven-dried, grinded and each sample was extracted either in deionized water or HNO3 (with H2O2). Extraction solutions were analyzed by ICP-MS for total concentrations of Li, Mg, Sr, Ba, Cr, Mn, S, Fe, Co, Cu, Zn, Mo, W, Tl, As, Sb, Bi, I, and Se. Soil and rain water samples were analyzed for the same trace elements. For elements such as As and Tl, deionized water extracts showed comparable concentrations to HNO3 extracts, indicating either the absence of particles or the presence of water-soluble particles. Elements such as Pb, Ba, Se and Sr were only dissolved to about 10 % or less in deionized water, indicating a significant share of water-insoluble particle formation. Distribution patterns of emissions and depositions over the whole island of Vulcano allowed classifying all investigated elements into four groups based on their origin (Fig. 2). Lithium was found ubiquitously on the island thus likely is of either marine or geogenic origin (group a in Fig. 2). The elements Mg, Fe, Sr, Mn, Zn, Co, and W were found predominantly on the crater where bare soil was present, and were grouped as “soilborne elements” (group b). These elements are characterized by deposition close to their source of origin. Elements with higher concentrations at the fumarolic field were grouped according to their transport characteristics. The elements I, Se, Tl, Bi, Sb, As, and S were considered as true volatiles (group c) being found also further away from the fumarolic field than Pb, Cr, Mo, and Ba which were interpreted to be predominantly emitted as particles (group d). Moss-bag biomonitoring proved to be an effective tool for the study of emission and deposition processes in active volcanic areas which also allows a classification of elements accumulated on the moss by their origin and distribution patterns.
    Description: Published
    Description: Patras, Greece
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: Moss-bags ; trace elements ; biomonitoring ; volcanic emissions ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...