ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (2)
  • Istituto Nazionale di Oceanografia e di Geofisica Sperimentale-OGS  (1)
  • American Chemical Society
  • Nature Publishing Group
  • 2010-2014  (2)
  • 1985-1989
  • 1930-1934
Collection
Years
  • 2010-2014  (2)
  • 1985-1989
  • 1930-1934
Year
  • 1
    Publication Date: 2017-04-04
    Description: The 2011 Tohoku-oki (Mw 9.1) earthquake is so far the best-observed megathrust rupture, which allowed the collection of unprecedented offshore data. The joint inversion of tsunami waveforms (DART buoys, bottom pressure sensors, coastal wave gauges, and GPS-buoys) and static geodetic data (onshore GPS, seafloor displacements obtained by a GPS/acoustic combination technique), allows us to retrieve the slip distribution on a non-planar fault. We show that the inclusion of near-source data is necessary to image the details of slip pattern (maximum slip ,48 m, up to ,35 m close to the Japan trench), which generated the large and shallow seafloor coseismic deformations and the devastating inundation of the Japanese coast. We investigate the relation between the spatial distribution of previously inferred interseismic coupling and coseismic slip and we highlight the importance of seafloor geodetic measurements to constrain the interseismic coupling, which is one of the key-elements for long-term earthquake and tsunami hazard assessment.
    Description: Published
    Description: 385
    Description: 3.1. Fisica dei terremoti
    Description: N/A or not JCR
    Description: restricted
    Keywords: Tohoku ; Subduction ; Tsunami ; Inverse problem ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-24
    Description: On April 6 (01:32 UTC) 2009 a MW 6.1 normal faulting earthquake struck the axial area of the Abruzzo region in central Italy. The earthquake heavily damaged the city of L’Aquila and its surroundings, causing 308 casualties, 70,000 evacuees and incalculable losses to the cultural heritage. We present the geometry of the fault system composed of two main normal fault planes, reconstructed by means of seismicity distribution: almost 3000 events with ML≥1.9 occurred in the area during 2009. The events have been located with a 1D velocity model we computed for the area by using data of the seismic sequence. The mainshock, located at around a 9.3 km depth beneath the town of L’Aquila, activated a 50° (+/- 3) SW-dipping and ~135° NW-trending normal fault with a length of about 16 km. The aftershocks activated the whole 10 km of the upper crust up to the surface. The geometry of the fault is coherent with the mapped San Demetrio-Paganica and Mt. Stabiata normal faults. The whole normal fault system that reached about 40 km of length by the end of December in the NW-trending direction, was activated within the first few days of the sequence when most of the energetic events occurred. The main shock fault plane was activated by a foreshock sequence that culminated with a MW 4.0 on March 30 (13:38 UTC), showing extensional kinematics with a minor left lateral component. The second major structure, located to the north close to Campotosto village, is controlled by an MW 5.0 event, which occurred on the same day of the main shock (April 6 at 23:15 UTC), and by an MW 5.2 event (April 9 at 00:53 UTC). The fault plane shows a shallower dip angle with respect to the main fault plane, of about 35° with a tendency to flattening towards the deepest portion. Due to the lack of seismicity above a 5 km depth, the connection between this structure and the mapped Monti della Laga fault is not straightforward. This northern segment is recognisable for about 12-14 km of length, always NW-trending and forming a right lateral step with the main fault plane. The result is a en-echelon system overlapping for about 6 km. The seismicity pattern also highlights the activation of numerous minor normal fault segments within the whole fault system. The deepest is located at around a 13-15 km depth, south of the L’Aquila mainshock, and it seems to be antithetic to the main fault plane.
    Description: Published
    Description: 367-387
    Description: JCR Journal
    Description: open
    Keywords: L’Aquila earthquake ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...