ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Institute of Physics  (230,548)
  • Nature Publishing Group  (76,924)
  • American Association for the Advancement of Science  (76,218)
  • National Academy of Sciences  (53,735)
  • American Meteorological Society
  • 2010-2014  (229,371)
  • 1985-1989  (99,508)
  • 1965-1969  (65,896)
  • 1955-1959  (38,345)
  • 1940-1944  (25,917)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2023-11-08
    Description: Ocean acidification, the drop in seawater pH associated with the ongoing enrichment of marine waters with carbon dioxide from fossil fuel burning, may seriously impair marine calcifying organisms. Our present understanding of the sensitivity of marine life to ocean acidification is based primarily on short-term experiments, in which organisms are exposed to increased concentrations of CO2. However, phytoplankton species with short generation times, in particular, may be able to respond to environmental alterations through adaptive evolution. Here, we examine the ability of the world’s single most important calcifying organism, the coccolithophore Emiliania huxleyi, to evolve in response to ocean acidification in two 500-generation selection experiments. Specifically, we exposed E. huxleyi populations founded by single or multiple clones to increased concentrations of CO2. Around 500 asexual generations later we assessed their fitness. Compared with populations kept at ambient CO2 partial pressure, those selected at increased partial pressure exhibited higher growth rates, in both the single- and multiclone experiment, when tested under ocean acidification conditions. Calcification was partly restored: rates were lower under increased CO2 conditions in all cultures, but were up to 50% higher in adapted compared with non-adapted cultures. We suggest that contemporary evolution could help to maintain the functionality of microbial processes at the base of marine food webs in the face of global change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-08
    Description: Climate variability in the tropical Atlantic Ocean is determined by large-scale ocean–atmosphere interactions, which particularly affect deep atmospheric convection over the ocean and surrounding continents1. Apart from influences from the Pacific El Niño/Southern Oscillation2 and the North Atlantic Oscillation3, the tropical Atlantic variability is thought to be dominated by two distinct ocean–atmosphere coupled modes of variability that are characterized by meridional4, 5 and zonal6, 7 sea-surface-temperature gradients and are mainly active on decadal and interannual timescales, respectively8, 9. Here we report evidence that the intrinsic ocean dynamics of the deep equatorial Atlantic can also affect sea surface temperature, wind and rainfall in the tropical Atlantic region and constitutes a 4.5-yr climate cycle. Specifically, vertically alternating deep zonal jets of short vertical wavelength with a period of about 4.5 yr and amplitudes of more than 10 cm s−1 are observed, in the deep Atlantic, to propagate their energy upwards, towards the surface10, 11. They are linked, at the sea surface, to equatorial zonal current anomalies and eastern Atlantic temperature anomalies that have amplitudes of about 6 cm s−1 and 0.4 °C, respectively, and are associated with distinct wind and rainfall patterns. Although deep jets are also observed in the Pacific12 and Indian13 oceans, only the Atlantic deep jets seem to oscillate on interannual timescales. Our knowledge of the persistence and regularity of these jets is limited by the availability of high-quality data. Despite this caveat, the oscillatory behaviour can still be used to improve predictions of sea surface temperature in the tropical Atlantic. Deep-jet generation and upward energy transmission through the Equatorial Undercurrent warrant further theoretical study.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-14
    Description: Cultivated bacteria such as actinomycetes are a highly useful source of biomedically important natural products. However, such ‘talented’ producers represent only a minute fraction of the entire, mostly uncultivated, prokaryotic diversity. The uncultured majority is generally perceived as a large, untapped resource of new drug candidates, but so far it is unknown whether taxa containing talented bacteria indeed exist. Here we report the single-cell- and metagenomics-based discovery of such producers. Two phylotypes of the candidate genus ‘Entotheonella’ with genomes of greater than 9 megabases and multiple, distinct biosynthetic gene clusters co-inhabit the chemically and microbially rich marine sponge Theonella swinhoei. Almost all bioactive polyketides and peptides known from this animal were attributed to a single phylotype. ‘Entotheonella’ spp. are widely distributed in sponges and belong to an environmental taxon proposed here as candidate phylum ‘Tectomicrobia’. The pronounced bioactivities and chemical uniqueness of ‘Entotheonella’ compounds provide significant opportunities for ecological studies and drug discovery.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-31
    Description: During the past decades climate and freshwater dynamics in the northwestern North Atlantic have undergone major changes. Large-scale freshening episodes, related to polar freshwater pulses, have had a strong influence on ocean variability in this climatically important region. However, little is known about variability before 1950, mainly due to the lack of long-term high-resolution marine proxy archives. Here we present the first multidecadal-length records of annually resolved Ba/Ca variations from Northwest Atlantic coralline algae. We observe positive relationships between algal Ba/Ca ratios from two Newfoundland sites and salinity observations back to 1950. Both records capture episodical multi-year freshening events during the 20th century. Variability in algal Ba/Ca is sensitive to freshwater-induced changes in upper ocean stratification, which affect the transport of cold, Ba-enriched deep waters onto the shelf (highly stratified equals less Ba/Ca). Algal Ba/Ca ratios therefore may serve as a new resource for reconstructing past surface ocean freshwater changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 1851-1865, doi:10.1175/2010JPO4217.1.
    Description: Motivated by the fact that time-dependent currents are ubiquitous in the ocean, this work studies the two-layer Phillips model on the beta plane with baroclinic shear flows that are steady, periodic, or aperiodic in time to understand their nonlinear evolution better. When a linearly unstable basic state is slightly perturbed, the primary wave grows exponentially until nonlinear advection adjusts the growth. Even though for long time scales these nearly two-dimensional motions predominantly cascade energy to large scales, for relatively short times the wave–mean flow and wave–wave interactions cascade energy to smaller horizontal length scales. The authors demonstrate that the manner through which these mechanisms excite the harmonics depends significantly on the characteristics of the basic state. Time-dependent basic states can excite harmonics very rapidly in comparison to steady basic states. Moreover, in all the simulations of aperiodic baroclinic shear flows, the barotropic component of the primary wave continues to grow after the adjustment by the nonlinearities. Furthermore, the authors find that the correction to the zonal mean flow can be much larger when the basic state is aperiodic compared to the periodic or steady limits. Finally, even though time-dependent baroclinic shear on an f plane is linearly stable, the authors show that perturbations can grow algebraically in the linear regime because of the erratic variations in the aperiodic flow. Subsequently, baroclinicity adjusts the growing wave and creates a final state that is more energetic than the nonlinear adjustment of any of the unstable steady baroclinic shears that are considered.
    Description: FJP was supported by NSERC and JP was supported by NSF OCE 0925061 during the research and writing of this manuscript.
    Keywords: Baroclinic flows ; Shear structure/flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 90 (2009):459-480, doi:10.1175/2008BAMS2608.1.
    Description: The Indian Ocean is unique among the three tropical ocean basins in that it is blocked at 25°N by the Asian landmass. Seasonal heating and cooling of the land sets the stage for dramatic monsoon wind reversals, strong ocean–atmosphere interactions, and intense seasonal rains over the Indian subcontinent, Southeast Asia, East Africa, and Australia. Recurrence of these monsoon rains is critical to agricultural production that supports a third of the world's population. The Indian Ocean also remotely influences the evolution of El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), North American weather, and hurricane activity. Despite its importance in the regional and global climate system though, the Indian Ocean is the most poorly observed and least well understood of the three tropical oceans. This article describes the Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction (RAMA), a new observational network designed to address outstanding scientific questions related to Indian Ocean variability and the monsoons. RAMA is a multinationally supported element of the Indian Ocean Observing System (IndOOS), a combination of complementary satellite and in situ measurement platforms for climate research and forecasting. The article discusses the scientific rationale, design criteria, and implementation of the array. Initial RAMA data are presented to illustrate how they contribute to improved documentation and understanding of phenomena in the region. Applications of the data for societal benefit are also described.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 89 (2008): 1111–1125, doi:10.1175/2008BAMS2462.1.
    Description: The Pilot Research Moored Array in the tropical Atlantic (PIRATA) was developed as a multinational observation network to improve our knowledge and understanding of ocean–atmosphere variability in the tropical Atlantic. PIRATA was motivated by fundamental scientific issues and by societal needs for improved prediction of climate variability and its impact on the economies of West Africa, northeastern Brazil, the West Indies, and the United States. In this paper the implementation of this network is described, noteworthy accomplishments are highlighted, and the future of PIRATA in the framework of a sustainable tropical Atlantic observing system is discussed. We demonstrate that PIRATA has advanced beyond a “Pilot” program and, as such, we have redefined the PIRATA acronym to be “Prediction and Research Moored Array in the Tropical Atlantic.”
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 90 (2009): 657-670, doi:10.1175/2008BAMS2667.1.
    Description: Oceanic overflows are bottom-trapped density currents originating in semienclosed basins, such as the Nordic seas, or on continental shelves, such as the Antarctic shelf. Overflows are the source of most of the abyssal waters, and therefore play an important role in the large-scale ocean circulation, forming a component of the sinking branch of the thermohaline circulation. As they descend the continental slope, overflows mix vigorously with the surrounding oceanic waters, changing their density and transport significantly. These mixing processes occur on spatial scales well below the resolution of ocean climate models, with the result that deep waters and deep western boundary currents are simulated poorly. The Gravity Current Entrainment Climate Process Team was established by the U.S. Climate Variability and Prediction (CLIVAR) Program to accelerate the development and implementation of improved representations of overflows within large-scale climate models, bringing together climate model developers with those conducting observational, numerical, and laboratory process studies of overflows. Here, the organization of the Climate Process Team is described, and a few of the successes and lessons learned during this collaboration are highlighted, with some emphasis on the well-observed Mediterranean overflow. The Climate Process Team has developed several different overflow parameterizations, which are examined in a hierarchy of ocean models, from comparatively well-resolved regional models to the largest-scale global climate models.
    Description: The Gravity Current Entrainment Climate Process Team was funded by NSF grants OCE-0336850 and OCE-0611572 and NOAA as a contribution to U.S.CLIVAR.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2381-2400, doi:10.1175/2010JPO4403.1.
    Description: Langmuir circulation (LC) is a turbulent upper-ocean process driven by wind and surface waves that contributes significantly to the transport of momentum, heat, and mass in the oceanic surface layer. The authors have previously performed a direct comparison of large-eddy simulations and observations of the upper-ocean response to a wind event with rapid mixed layer deepening. The evolution of simulated crosswind velocity variance and spatial scales, as well as mixed layer deepening, was only consistent with observations if LC effects are included in the model. Based on an analysis of these validated simulations, in this study the fundamental differences in mixing between purely shear-driven turbulence and turbulence with LC are identified. In the former case, turbulent kinetic energy (TKE) production due to shear instabilities is largest near the surface, gradually decreasing to zero near the base of the mixed layer. This stands in contrast to the LC case in which at middepth range TKE production can be dominated by Stokes drift shear. Furthermore, the Eulerian mean vertical shear peaks near the base of the mixed layer so that TKE production by mean shear flow is elevated there. LC transports horizontal momentum efficiently downward leading to an along-wind velocity jet below LC downwelling regions at the base of the mixed layer. Locally enhanced vertical shear instabilities as a result of this jet efficiently erode the thermocline. In turn, enhanced breaking internal waves inject cold deep water into the mixed layer, where LC currents transport temperature perturbation advectively. Thus, LC and locally generated shear instabilities work intimately together to facilitate strongly the mixed layer deepening process.
    Description: This research was supported by the Office of Naval Research through Grants N00014-09-M-0112 (TK) and N00014-06-1-0178 (AP, JT). Author TK also received support from a Woods Hole Oceanographic Institution Cooperative Institute for Climate and Ocean Research Postdoctoral Scholarship.
    Keywords: Mixed layer ; Shear structure/flows ; Wind effects ; Turbulence ; Thermocline ; Internal waves ; Advection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 23 (2010): 6221–6233, doi:10.1175/2010JCLI3402.1.
    Description: Enhanced decadal variability in sea surface temperature (SST) centered on the Kuroshio Extension (KE) has been found in the Community Climate System Model version 3 (CCSM3) as well as in other coupled climate models. This decadal peak has higher energy than is found in nature, almost twice as large in some cases. While previous analyses have concentrated on the mechanisms for such decadal variability in coupled models, an analysis of the causes of excessive SST response to changes in wind stress has been missing. Here, a detailed comparison of the relationships between interannual changes in SST and sea surface height (SSH) as a proxy for geostrophic surface currents in the region in both CCSM3 and observations, and how these relationships depend on the mean ocean circulation, temperature, and salinity, is made. We use observationally based climatological temperature and salinity fields as well as satellite-based SSH and SST fields for comparison. The primary cause for the excessive SST variability is the coincidence of the mean KE with the region of largest SST gradients in the model. In observations, these two regions are separated by almost 500 km. In addition, the too shallow surface oceanic mixed layer in March north of the KE in the subarctic Pacific contributes to the biases. These biases are not unique to CCSM3 and suggest that mean biases in current, temperature, and salinity structures in separated western boundary current regions can exert a large influence on the size of modeled decadal SST variability.
    Description: Support for L.T. was provided by the NASA sponsored Ocean Surface Topography Science Team, under Contract 1267196 with the University of Washington, administered by the Jet Propulsion Laboratory. Support for Y.-O. K. comes from the NOAA Office of Global Programs (grant to C. Deser and Y.-O. Kwon) and the WHOI Heyman fellowship.
    Keywords: Bias ; Coupled models ; Decadal variability ; Ocean models ; Sea surface temperature ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...