ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Gravity, Geodesy and Tides  (19)
  • Massively Parallel (Deep) Sequencing  (18)
  • Oxford University Press  (37)
  • American Association for the Advancement of Science
  • 2010-2014  (37)
  • 1985-1989
  • 1980-1984
Collection
Publisher
  • Oxford University Press  (37)
  • American Association for the Advancement of Science
Years
  • 2010-2014  (37)
  • 1985-1989
  • 1980-1984
  • 2015-2019  (91)
Year
  • 1
    Publication Date: 2013-04-02
    Description: As researchers begin probing deep coverage sequencing data for increasingly rare mutations and subclonal events, the fidelity of next generation sequencing (NGS) laboratory methods will become increasingly critical. Although error rates for sequencing and polymerase chain reaction (PCR) are well documented, the effects that DNA extraction and other library preparation steps could have on downstream sequence integrity have not been thoroughly evaluated. Here, we describe the discovery of novel C 〉 A/G 〉 T transversion artifacts found at low allelic fractions in targeted capture data. Characteristics such as sequencer read orientation and presence in both tumor and normal samples strongly indicated a non-biological mechanism. We identified the source as oxidation of DNA during acoustic shearing in samples containing reactive contaminants from the extraction process. We show generation of 8-oxoguanine (8-oxoG) lesions during DNA shearing, present analysis tools to detect oxidation in sequencing data and suggest methods to reduce DNA oxidation through the introduction of antioxidants. Further, informatics methods are presented to confidently filter these artifacts from sequencing data sets. Though only seen in a low percentage of reads in affected samples, such artifacts could have profoundly deleterious effects on the ability to confidently call rare mutations, and eliminating other possible sources of artifacts should become a priority for the research community.
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-17
    Description: Measurements of ground deformation can be used to identify and interpret geophysical processes occurring at volcanoes. Most studies rely on a single geodetic technique, or fit a geophysical model to the results of multiple geodetic techniques. Here we present a methodology that combines GPS, Total Station measurements and InSAR into a single reference frame to produce an integrated 3-D geodetic velocity surface without any prior geophysical assumptions. The methodology consists of five steps: design of the network, acquisition and processing of the data, spatial integration of the measurements, time series computation and finally the integration of spatial and temporal measurements. The most significant improvements of this method are (1) the reduction of the required field time, (2) the unambiguous detection of outliers, (3) an increased measurement accuracy and (4) the construction of a 3-D geodetic velocity field. We apply this methodology to ongoing motion on Arenal's western flank. Integration of multiple measurement techniques at Arenal volcano revealed a deformation field that is more complex than that described by individual geodetic techniques, yet remains consistent with previous studies. This approach can be applied to volcano monitoring worldwide and has the potential to be extended to incorporate other geodetic techniques and to study transient deformation.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-09
    Description: In autumn 2012, the new release 05 (RL05) of monthly geopotencial spherical harmonics Stokes coefficients (SC) from Gravity Recovery and Climate Experiment (GRACE) mission was published. This release reduces the noise in high degree and order SC, but they still need to be filtered. One of the most common filtering processing is the combination of decorrelation and Gaussian filters. Both of them are parameters dependent and must be tuned by the users. Previous studies have analyzed the parameters choice for the RL05 GRACE data for oceanic applications, and for RL04 data for global application. This study updates the latter for RL05 data extending the statistics analysis. The choice of the parameters of the decorrelation filter has been optimized to: (1) balance the noise reduction and the geophysical signal attenuation produced by the filtering process; (2) minimize the differences between GRACE and model-based data and (3) maximize the ratio of variability between continents and oceans. The Gaussian filter has been optimized following the latter criteria. Besides, an anisotropic filter, the fan filter, has been analyzed as an alternative to the Gauss filter, producing better statistics.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-09-13
    Description: Recent advances in RNA sequencing technology (RNA-Seq) enables comprehensive profiling of RNAs by producing millions of short sequence reads from size-fractionated RNA libraries. Although conventional tools for detecting and distinguishing non-coding RNAs (ncRNAs) from reference-genome data can be applied to sequence data, ncRNA detection can be improved by harnessing the full information content provided by this new technology. Here we present N orah D esk , the first unbiased and universally applicable method for small ncRNAs detection from RNA-Seq data. N orah D esk utilizes the coverage-distribution of small RNA sequence data as well as thermodynamic assessments of secondary structure to reliably predict and annotate ncRNA classes. Using publicly available mouse sequence data from brain, skeletal muscle, testis and ovary, we evaluated our method with an emphasis on the performance for microRNAs (miRNAs) and piwi-interacting small RNA (piRNA). We compared our method with D ario and mir D eep 2 and found that N orah D esk produces longer transcripts with higher read coverage. This feature makes it the first method particularly suitable for the prediction of both known and novel piRNAs.
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-06-06
    Description: Non-coding RNAs (ncRNA) account for a large portion of the transcribed genomic output. This diverse family of untranslated RNA molecules play a crucial role in cellular function. The use of ‘deep sequencing’ technology (also known as ‘next generation sequencing’) to infer transcript expression levels in general, and ncRNA specifically, is becoming increasingly common in molecular and clinical laboratories. We developed a software termed ‘RandA’ (which stands for ncRNA Read-and-Analyze) that performs comprehensive ncRNA profiling and differential expression analysis on deep sequencing generated data through a graphical user interface running on a local personal computer. Using RandA, we reveal the complexity of the ncRNA repertoire in a given cell population. We further demonstrate the relevance of such an extensive ncRNA analysis by elucidating a multitude of characterizing features in pathogen infected mammalian cells. RandA is available for download at http://ibis.tau.ac.il/RandA .
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-02-17
    Description: Standard Illumina mate-paired libraries are constructed from 3- to 5-kb DNA fragments by a blunt-end circularization. Sequencing reads that pass through the junction of the two joined ends of a 3–5-kb DNA fragment are not easy to identify and pose problems during mapping and de novo assembly. Longer read lengths increase the possibility that a read will cross the junction. To solve this problem, we developed a mate-paired protocol for use with Illumina sequencing technology that uses Cre-Lox recombination instead of blunt end circularization. In this method, a LoxP sequence is incorporated at the junction site. This sequence allows screening reads for junctions without using a reference genome. Junction reads can be trimmed or split at the junction. Moreover, the location of the LoxP sequence in the reads distinguishes mate-paired reads from spurious paired-end reads. We tested this new method by preparing and sequencing a mate-paired library with an insert size of 3 kb from Saccharomyces cerevisiae . We present an analysis of the library quality statistics and a new bio-informatics tool called DeLoxer that can be used to analyze an IlluminaCre-Lox mate-paired data set. We also demonstrate how the resulting data significantly improves a de novo assembly of the S. cerevisiae genome.
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-10-10
    Description: The sequencing of libraries containing molecules shorter than the read length, such as in ancient or forensic applications, may result in the production of reads that include the adaptor, and in paired reads that overlap one another. Challenges for the processing of such reads are the accurate identification of the adaptor sequence and accurate reconstruction of the original sequence most likely to have given rise to the observed read(s). We introduce an algorithm that removes the adaptors and reconstructs the original DNA sequences using a Bayesian maximum a posteriori probability approach. Our algorithm is faster, and provides a more accurate reconstruction of the original sequence for both simulated and ancient DNA data sets, than other approaches. leeHom is released under the GPLv3 and is freely available from: https://bioinf.eva.mpg.de/leehom/
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-23
    Description: The paper in question by Van Camp and co-authors [MVC] challenges previous work showing that ground gravity data arising from hydrology can provide a consistent signal for the comparison with satellite gravity data. The data sets used are similar to those used previously, that is, the gravity field as measured by the GRACE satellites versus ground-based data from superconducting gravimeters (SGs) over the same continental area, in this case Central Europe. One of the main impediments in this paper is the presentation that is frequently confusing and misleading as to what the data analysis really shows, for example, the irregular treatment of annual components that are first subtracted then reappear in the analysis. More importantly, we disagree on specific points. Two calculations are included in our comment to illustrate where we believe that the processing in [MVC] paper is deficient. The first deals with their erroneous treatment of the global hydrology using a truncated spherical harmonic approach which explains almost a factor 2 error in their computation of the loading. The second shows the effect of making the wrong assumption in the GRACE/hydrology/surface gravity comparison by inverting the whole of the hydrology loading for underground stations. We also challenge their claims that empirical orthogonal function techniques cannot be done in the presence of periodic components, and that SG data cannot be corrected for comparisons with GRACE data. The main conclusion of their paper, that there is little coherence between ground gravity stations and this invalidates GRACE comparisons, is therefore questionable. There is nothing in [MVC] that contradicts any of the previous papers that have shown clearly a strong relation between seasonal signals obtained from both ground gravity and GRACE satellite data.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-10-23
    Description: The influence of changes in surface ice-mass redistribution and associated viscoelastic response of the Earth, known as glacial isostatic adjustment (GIA), on the Earth's rotational dynamics has long been known. Equally important is the effect of the changes in the rotational dynamics on the viscoelastic deformation of the Earth. This signal, known as the rotational feedback, or more precisely, the rotational feedback on the sea level equation, has been mathematically described by the sea level equation extended for the term that is proportional to perturbation in the centrifugal potential and the second-degree tidal Love number. The perturbation in the centrifugal force due to changes in the Earth's rotational dynamics enters not only into the sea level equation, but also into the conservation law of linear momentum such that the internal viscoelastic force, the perturbation in the gravitational force and the perturbation in the centrifugal force are in balance. Adding the centrifugal-force perturbation to the linear-momentum balance creates an additional rotational feedback on the viscoelastic deformations of the Earth. We term this feedback mechanism, which is studied in this paper, as the rotational feedback on the linear-momentum balance. We extend both the time-domain method for modelling the GIA response of laterally heterogeneous earth models developed by Martinec and the traditional Laplace-domain method for modelling the GIA-induced rotational response to surface loading by considering the rotational feedback on linear-momentum balance. The correctness of the mathematical extensions of the methods is validated numerically by comparing the polar-motion response to the GIA process and the rotationally induced degree 2 and order 1 spherical harmonic component of the surface vertical displacement and gravity field. We present the difference between the case where the rotational feedback on linear-momentum balance is considered against that where it is not. Numerical simulations show that the resulting difference in radial displacement and sea level change between these situations since the Last Glacial Maximum reaches values of ±25 and ±1.8 m, respectively. Furthermore, the surface deformation pattern is modified by up to 10 per cent in areas of former or ongoing glaciation, but by up to 50 per cent at the bottom of the southern Indian ocean. This also results in the movement of coastlines during the last deglaciation to differ between the two cases due to the difference in the ocean loading, which is seen for instance in the area around Hudson Bay, Canada and along the Chinese, Australian or Argentinian coastlines.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-09-20
    Description: During megathrust earthquakes, great ruptures are accompanied by large scale mass redistribution inside the solid Earth and by ocean mass redistribution due to bathymetry changes. These large scale mass displacements can be detected using the monthly gravity maps of the GRACE satellite mission. In recent years it has become increasingly common to use the long wavelength changes in the Earth's gravity field observed by GRACE to infer seismic source properties for large megathrust earthquakes. An important advantage of space gravimetry is that it is independent from the availability of land for its measurements. This is relevant for observation of megathrust earthquakes, which occur mostly offshore, such as the $M_{\text{w}} \sim 9$ 2004 Sumatra–Andaman, 2010 Maule (Chile) and 2011 Tohoku-Oki (Japan) events. In Broerse et al. , we examined the effect of the presence of an ocean above the rupture on long wavelength gravity changes and showed it to be of the first order. Here we revisit the implementation of an ocean layer through the sea level equation and compare the results with approximated methods that have been used in the literature. One of the simplifications usually lies in the assumption of a globally uniform ocean layer. We show that especially in the case of the 2010 Maule earthquake, due to the closeness of the South American continent, the uniform ocean assumption is not valid and causes errors up to 57 per cent for modelled peak geoid height changes (expressed at a spherical harmonic truncation degree of 40). In addition, we show that when a large amount of slip occurs close to the trench, horizontal motions of the ocean floor play a mayor role in the ocean contribution to gravity changes. Using a slip model of the 2011 Tohoku-Oki earthquake that places the majority of slip close to the surface, the peak value in geoid height change increases by 50 per cent due to horizontal ocean floor motion. Furthermore, we test the influence of the maximum spherical harmonic degree at which the sea level equation is performed for sea level changes occurring along coastlines, which shows to be important for relative sea level changes occurring along the shore. Finally, we demonstrate that ocean floor loading, self-gravitation of water and conservation of water mass are of second order importance for coseismic gravity changes. When GRACE observations are used to determine earthquake parameters such as seismic moment or source depth, the uniform ocean layer method introduces large biases, depending on the location of the rupture with respect to the continent. The same holds for interpreting shallow slip when horizontal motions are not properly accounted for in the ocean contribution. In both cases the depth at which slip occurs will be underestimated.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-09-07
    Description: Long-term volcanic subsidence provides insight into intereruptive processes, which comprise the longest portion of the eruptive cycle. Ground-based geodetic surveys of Medicine Lake Volcano (MLV), northern CA, document subsidence at rates of ~–10 mm yr –1 between 1954 and 2004. The long observation period plus the duration and stable magnitude of this signal presents an ideal opportunity to study long-term volcanic deformation, but this first requires accurate knowledge of the geometry and magnitude of the source. Best-fitting analytical source models to past levelling and GPS data sets show conflicting source parameters—primarily the model depth. To overcome this, we combine multiple tracks of InSAR data, each with a different look angle, to improve upon the spatial resolution of ground-based measurements. We compare the results from InSAR to those of past geodetic studies, extending the geodetic record to 2011 and demonstrating that subsidence at MLV continues at ~–10 mm yr –1 . Using geophysical inversions, we obtain the best-fitting analytical source model—a sill located at 9–10 km depth beneath the caldera. This model geometry is similar to those of past studies, providing a good fit to the high spatial density of InSAR measurements, while accounting for the high ratio of vertical to horizontal deformation derived from InSAR and recorded by existing levelling and GPS data sets. We discuss possible causes of subsidence and show that this model supports the hypothesis that deformation at MLV is driven by tectonic extension, gravitational loading, plus a component of volume loss at depth, most likely due to cooling and crystallization within the intrusive complex that underlies the edifice. Past InSAR surveys at MLV, and throughout the Cascades, are of variable success due to dense vegetation, snow cover and atmospheric artefacts. In this study, we demonstrate how InSAR may be successfully used in this setting by applying a suite of multitemporal analysis methods that account for atmospheric and orbital noise sources. These methods include: a stacking strategy based upon the noise characteristics of each data set; pixelwise rate-map formation (-RATE) and persistent scatterer InSAR (StaMPS).
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-09-11
    Description: In the literature, the inverted coseismic slip models from seismological and geodetic data for the 2011 Tohoku-Oki earthquake portray significant discrepancies, in particular regarding the intensity and the distribution of the rupture near the trench. For a megathrust earthquake, it is difficult to discern the slip along the shallow part of the fault from the geodetic data, which are often acquired on land. In this paper, we discuss the uncertainties in the slip distribution inversion using the geodetic data for the 2011 Tohoku earthquake and the Fully Bayesian Inversion method. These uncertainties are due to the prior information regarding the boundary conditions at the edges of the fault, the dip subduction angle and the smoothing operator. Using continuous GPS data from the Japan Island, the results for the rigid and free boundary conditions show that they produce remarkably different slip distributions at shallow depths, with the latter producing a large slip exceeding 30 m near the surface. These results indicate that the smoothing operator (gradient or Laplacian schemes) does not severely affect the slip pattern. To better invert the coseismic slip, we then introduce the ocean bottom GPS (OB-GPS) data, which improve the resolution of the shallow part of the fault. We obtain a near-trench slip greater than 40 m that reaches the Earth's surface, regardless of which boundary condition is used. Additionally, we show that using a mean dip angle for the fault as derived from subduction models is adequate if the goal is to invert for the general features of the slip pattern of this megathrust event.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-10-16
    Description: Complications arise in the interpretation of gravity fields because of interference from systematic degradations, such as boundary blurring and distortion. The major sources of these degradations are the various systematic errors that inevitably occur during gravity field data acquisition, discretization and geophysical forward modelling. To address this problem, we evaluate deconvolution method that aim to detect the clear horizontal boundaries of anomalous sources by the suppression of systematic errors. A convolution-based multilayer projection model, based on the classical 3-D gravity field forward model, is innovatively derived to model the systematic error degradation. Our deconvolution algorithm is specifically designed based on this multilayer projection model, in which three types of systematic error are defined. The degradations of the different systematic errors are considered in the deconvolution algorithm. As the primary source of degradation, the convolution-based systematic error is the main object of the multilayer projection model. Both the random systematic error and the projection systematic error are shown to form an integral part of the multilayer projection model, and the mixed norm regularization method and the primal-dual optimization method are therefore employed to control these errors and stabilize the deconvolution solution. We herein analyse the parameter identification and convergence of the proposed algorithms, and synthetic and field data sets are both used to illustrate their effectiveness. Additional synthetic examples are specifically designed to analyse the effects of the projection systematic error, which is caused by the uncertainty associated with the estimation of the impulse response function.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-06-21
    Description: We propose to test if gravimetry can prove useful in discriminating different models of long-term deep crustal processes in the case of the Taiwan mountain belt. We discuss two existing tectonic models that differ in the deep processes proposed to sustain the long-term growth of the orogen. One model assumes underplating of the uppermost Eurasian crust with subduction of the deeper part of the crust into the mantle. The other one suggests the accretion of the whole Eurasian crust above crustal-scale ramps, the lower crust being accreted into the collisional orogen. We compute the temporal gravity changes caused only by long-term rock mass transfers at depth for each of them. We show that the underplating model implies a rate of gravity change of –6 x 10 –2 μGal yr –1 , a value that increases to 2 x 10 –2 μGal yr –1 if crustal subduction is neglected. If the accretion of the whole Eurasian crust occurs, a rate of 7 x 10 –2 μGal yr –1 is obtained. The two models tested differ both in signal amplitude and spatial distribution. The yearly gravity changes expected by long-term deep crustal mass processes in Taiwan are two orders of magnitude below the present-day uncertainty of land-based gravity measurements. Assuming that these annually averaged long-term gravity changes will linearly accumulate with ongoing mountain building, multidecadal time-series are needed to identify comparable rates of gravity change. However, as gravity is sensitive to any mass redistribution, effects of short-term processes such as seismicity and surface mass transfers (erosion, sedimentation, ground-water) may prevent from detecting any long-term deep signal. This study indicates that temporal gravity is not appropriate for deciphering the long-term deep crustal processes involved in the Taiwan mountain belt.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-06-21
    Description: The computation of quasi-static deformation for axisymmetric viscoelastic structures on a gravitating spherical earth is addressed using the spectral element method (SEM). A 2-D spectral element domain is defined with respect to spherical coordinates of radius and angular distance from a pole of symmetry, and 3-D viscoelastic structure is assumed to be azimuthally symmetric with respect to this pole. A point dislocation source that is periodic in azimuth is implemented with a truncated sequence of azimuthal order numbers. Viscoelasticity is limited to linear rheologies and is implemented with the correspondence principle in the Laplace transform domain. This leads to a series of decoupled 2-D problems which are solved with the SEM. Inverse Laplace transform of the independent 2-D solutions leads to the time-domain solution of the 3-D equations of quasi-static equilibrium imposed on a 2-D structure. The numerical procedure is verified through comparison with analytic solutions for finite faults embedded in a laterally homogeneous viscoelastic structure. This methodology is applicable to situations where the predominant structure varies in one horizontal direction, such as a structural contrast across (or parallel to) a long strike-slip fault.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-06-21
    Description: The geodetic rates for the gravity variation and vertical uplift in polar regions subject to past and present-day ice-mass changes (PDIMCs) provide important insight into the rheological structure of the Earth. We provide an update of the rates observed at Ny-Ålesund, Svalbard. To do so, we extract and remove the significant seasonal content from the observations. The rate of gravity variations, derived from absolute and relative gravity measurements, is –1.39 ± 0.11 μGal yr –1 . The rate of vertical displacements is estimated using GPS and tide gauge measurements. We obtain 7.94 ± 0.21 and 8.29 ± 1.60 mm yr –1 , respectively. We compare the extracted signal with that predicted by GLDAS/Noah and ERA-interim hydrology models. We find that the seasonal gravity variations are well-represented by local hydrology changes contained in the ERA-interim model. The phase of seasonal vertical displacements are due to non-local continental hydrology and non-tidal ocean loading. However, a large part of the amplitude of the seasonal vertical displacements remains unexplained. The geodetic rates are used to investigate the asthenosphere viscosity and lithosphere/asthenosphere thicknesses. We first correct the updated geodetic rates for those induced by PDIMCs in Svalbard, using published results, and the sea level change due to the melting of the major ice reservoirs. We show that the latter are at the level of the geodetic rate uncertainties and are responsible for rates of gravity variations and vertical displacements of –0.29 ± 0.03 μGal yr –1 and 1.11 ± 0.10 mm yr –1 , respectively. To account for the late Pleistocene deglaciation, we use the global ice evolution model ICE-3G. The Little Ice Age (LIA) deglaciation in Svalbard is modelled using a disc load model with a simple linear temporal evolution. The geodetic rates at Ny-Ålesund induced by the past deglaciations depend on the viscosity structure of the Earth. We find that viscous relaxation time due to the LIA deglaciation in Svalbard is more than 60 times shorter than that due to the Pleistocene deglaciation. We also find that the response to past and PDIMCs of an Earth model with asthenosphere viscosities ranging between 1.0 and 5.5 x 10 18 Pa s and lithosphere (resp. asthenosphere) thicknesses ranging between 50 and 100 km (resp. 120 and 170 km) can explain the rates derived from geodetic observations.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-04-15
    Description: Pyrosequencing of the 16S ribosomal RNA gene (16S) has become one of the most popular methods to assess microbial diversity. Pyrosequencing reads containing ambiguous bases (Ns) are generally discarded based on the assumptions of their non-sequence-dependent formation and high error rates. However, taxonomic composition differed by removal of reads with Ns. We determined whether Ns from pyrosequencing occur in a sequence-dependent manner. Our reads and the corresponding flow value data revealed occurrence of sequence-specific N errors with a common sequential pattern (a homopolymer + a few nucleotides with bases other than the homopolymer + N) and revealed that the nucleotide base of the homopolymer is the true base for the following N. Using an algorithm reflecting this sequence-dependent pattern, we corrected the Ns in the 16S (86.54%), bphD (81.37%) and nifH (81.55%) amplicon reads from a mock community with high precisions of 95.4, 96.9 and 100%, respectively. The new N correction method was applicable for determining most of Ns in amplicon reads from a soil sample, resulting in reducing taxonomic biases associated with N errors and in shotgun sequencing reads from public metagenome data. The method improves the accuracy and precision of microbial community analysis and genome sequencing using 454 pyrosequencing.
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-11-16
    Description: The 2 principle and the unbiased predictive risk estimator are used to determine optimal regularization parameters in the context of 3-D focusing gravity inversion with the minimum support stabilizer. At each iteration of the focusing inversion the minimum support stabilizer is determined and then the fidelity term is updated using the standard form transformation. Solution of the resulting Tikhonov functional is found efficiently using the singular value decomposition of the transformed model matrix, which also provides for efficient determination of the updated regularization parameter each step. Experimental 3-D simulations using synthetic data of a dipping dike and a cube anomaly demonstrate that both parameter estimation techniques outperform the Morozov discrepancy principle for determining the regularization parameter. Smaller relative errors of the reconstructed models are obtained with fewer iterations. Data acquired over the Gotvand dam site in the south-west of Iran are used to validate use of the methods for inversion of practical data and provide good estimates of anomalous structures within the subsurface.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-11-19
    Description: Global navigation satellite systems (GNSSs) have revealed that a mega-thrust earthquake that occurs in an island-arc trench system causes post-seismic crustal deformation. Such crustal deformation data have been interpreted by combining three mechanisms: afterslip, poroelastic rebound and viscoelastic relaxation. It is seismologically important to determine the contribution of each mechanism because it provides frictional properties between the plate boundaries and viscosity estimates in the asthenosphere which are necessary to evaluate the stress behaviour during earthquake cycles. However, the observation sites of GNSS are mostly deployed over land and can detect only a small part of the large-scale deformation, which precludes a clear separation of the mechanisms. To extend the spatial coverage of the deformation area, recent studies started to use satellite gravity data that can detect long-wavelength deformations over the ocean. To date, compared with theoretical models for calculating the post-seismic crustal deformation, a few models have been proposed to interpret the corresponding gravity variations. Previous approaches have adopted approximations for the effects of compressibility, sphericity and self-gravitation when computing gravity changes. In this study, a new spectral-finite element approach is presented to consider the effects of material compressibility for Burgers viscoelastic earth model with a laterally heterogeneous viscosity distribution. After the basic principles are explained, it is applied to the 2004 Sumatra–Andaman earthquake. For this event, post-seismic deformation mechanisms are still a controversial topic. Using the developed approach, it is shown that the spatial patterns of gravity change generated by the above three mechanisms clearly differ from one another. A comparison of the theoretical simulation results with the satellite gravity data obtained from the Gravity Recovery and Climate Experiment reveals that both afterslip and viscoelastic relaxation are occurring. Considering the spatial patterns in satellite gravity fields is an effective method for investigating post-seismic deformation mechanisms.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-09-17
    Description: Heterogeneity is a ubiquitous feature of biological systems. A complete understanding of such systems requires a method for uniquely identifying and tracking individual components and their interactions with each other. We have developed a novel method of uniquely tagging individual cells in vivo with a genetic ‘barcode’ that can be recovered by DNA sequencing. Our method is a two-component system comprised of a genetic barcode cassette whose fragments are shuffled by Rci , a site-specific DNA invertase. The system is highly scalable, with the potential to generate theoretical diversities in the billions. We demonstrate the feasibility of this technique in Escherichia coli . Currently, this method could be employed to track the dynamics of populations of microbes through various bottlenecks. Advances of this method should prove useful in tracking interactions of cells within a network, and/or heterogeneity within complex biological samples.
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-09-17
    Description: Barcoded vectors are promising tools for investigating clonal diversity and dynamics in hematopoietic gene therapy. Analysis of clones marked with barcoded vectors requires accurate identification of potentially large numbers of individually rare barcodes, when the exact number, sequence identity and abundance are unknown. This is an inherently challenging application, and the feasibility of using contemporary next-generation sequencing technologies is unresolved. To explore this potential application empirically, without prior assumptions, we sequenced barcode libraries of known complexity. Libraries containing 1, 10 and 100 Sanger-sequenced barcodes were sequenced using an Illumina platform, with a 100-barcode library also sequenced using a SOLiD platform. Libraries containing 1 and 10 barcodes were distinguished from false barcodes generated by sequencing error by a several log-fold difference in abundance. In 100-barcode libraries, however, expected and false barcodes overlapped and could not be resolved by bioinformatic filtering and clustering strategies. In independent sequencing runs multiple false-positive barcodes appeared to be represented at higher abundance than known barcodes, despite their confirmed absence from the original library. Such errors, which potentially impact barcoding studies in an application-dependent manner, are consistent with the existence of both stochastic and systematic error, the mechanism of which is yet to be fully resolved.
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-08-07
    Description: Some of the major geothermal anomalies in central Europe are linked to tectonic structures within the top of crystalline basement, which modify strongly the top of this basement. Their assessment is a major challenge in exploration geophysics. Gravity has been proven to be suitable for the detection of mainly large scale lithological and structural inhomogeneities. Indeed, it is well known and proven by different wells that, for example, in northern Switzerland extended negative anomalies are linked to such structures. Due to depth limitation of wells, there vertical extension is often unknown. In this study, we have investigated the potential of gravity for the geometrical characterization of such basement structures. Our approach consists in the combination of the series of Butterworth filters, geological modelling and best-fitting between observed and computed residual anomalies. In this respect, filters of variable wavelength are applied to observed and computed gravity data. The geological model is discretized into a finite element mesh. Near-surface anomalies and the effect of the sedimentary cover were eliminated using cut-off wavelength of 10 km and geological and seismic information. We analysed the potential of preferential Butterworth filtering in a sensitivity study and applied the above mentioned approach to part of the Swiss molasses basin. Sensitivity analyses reveal that such sets of residual anomalies represents a pseudo-tomography revealing the distribution of different structures with depth. This finding allows for interpreting negative anomalies in terms of 3-D volumes. Best-fitting then permits determination of the most likely 3-D geometries of such basement structures. Our model fits both, geological observations and gravity: among 10 deep boreholes in the studied area, six reach the respective units and confirm our distribution of the negative (and positive) anomalies.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-07-16
    Description: We present an in silico approach for the reconstruction of complete mitochondrial genomes of non-model organisms directly from next-generation sequencing (NGS) data—mitochondrial baiting and iterative mapping (MITObim). The method is straightforward even if only (i) distantly related mitochondrial genomes or (ii) mitochondrial barcode sequences are available as starting-reference sequences or seeds, respectively. We demonstrate the efficiency of the approach in case studies using real NGS data sets of the two monogenean ectoparasites species Gyrodactylus thymalli and Gyrodactylus derjavinoides including their respective teleost hosts European grayling ( Thymallus thymallus ) and Rainbow trout ( Oncorhynchus mykiss ). MITObim appeared superior to existing tools in terms of accuracy, runtime and memory requirements and fully automatically recovered mitochondrial genomes exceeding 99.5% accuracy from total genomic DNA derived NGS data sets in 〈24 h using a standard desktop computer. The approach overcomes the limitations of traditional strategies for obtaining mitochondrial genomes for species with little or no mitochondrial sequence information at hand and represents a fast and highly efficient in silico alternative to laborious conventional strategies relying on initial long-range PCR. We furthermore demonstrate the applicability of MITObim for metagenomic/pooled data sets using simulated data. MITObim is an easy to use tool even for biologists with modest bioinformatics experience. The software is made available as open source pipeline under the MIT license at https://github.com/chrishah/MITObim .
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-07-16
    Description: Both 454 and Ion Torrent sequencers are capable of producing large amounts of long high-quality sequencing reads. However, as both methods sequence homopolymers in one cycle, they both suffer from homopolymer uncertainty and incorporation asynchronization. In mapping, such sequencing errors could shift alignments around homopolymers and thus induce incorrect mismatches, which have become a critical barrier against the accurate detection of single nucleotide polymorphisms (SNPs). In this article, we propose a hidden Markov model (HMM) to statistically and explicitly formulate homopolymer sequencing errors by the overcall, undercall, insertion and deletion. We use a hierarchical model to describe the sequencing and base-calling processes, and we estimate parameters of the HMM from resequencing data by an expectation-maximization algorithm. Based on the HMM, we develop a realignment-based SNP-calling program, termed PyroHMMsnp, which realigns read sequences around homopolymers according to the error model and then infers the underlying genotype by using a Bayesian approach. Simulation experiments show that the performance of PyroHMMsnp is exceptional across various sequencing coverages in terms of sensitivity, specificity and F 1 measure, compared with other tools. Analysis of the human resequencing data shows that PyroHMMsnp predicts 12.9% more SNPs than Samtools while achieving a higher specificity. ( http://code.google.com/p/pyrohmmsnp/ ).
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-05-29
    Description: Clustered regularly interspaced short palindromic repeats (CRISPR) constitute a bacterial and archaeal adaptive immune system that protect against bacteriophage (phage). Analysis of CRISPR loci reveals the history of phage infections and provides a direct link between phage and their hosts. All current tools for CRISPR identification have been developed to analyse completed genomes and are not well suited to the analysis of metagenomic data sets, where CRISPR loci are difficult to assemble owing to their repetitive structure and population heterogeneity. Here, we introduce a new algorithm, Crass, which is designed to identify and reconstruct CRISPR loci from raw metagenomic data without the need for assembly or prior knowledge of CRISPR in the data set. CRISPR in assembled data are often fragmented across many contigs/scaffolds and do not fully represent the population heterogeneity of CRISPR loci. Crass identified substantially more CRISPR in metagenomes previously analysed using assembly-based approaches. Using Crass, we were able to detect CRISPR that contained spacers with sequence homology to phage in the system, which would not have been identified using other approaches. The increased sensitivity, specificity and speed of Crass will facilitate comprehensive analysis of CRISPRs in metagenomic data sets, increasing our understanding of phage-host interactions and co-evolution within microbial communities.
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-05-29
    Description: Read alignment is an ongoing challenge for the analysis of data from sequencing technologies. This article proposes an elegantly simple multi-seed strategy, called seed-and-vote, for mapping reads to a reference genome. The new strategy chooses the mapped genomic location for the read directly from the seeds. It uses a relatively large number of short seeds (called subreads) extracted from each read and allows all the seeds to vote on the optimal location. When the read length is 〈160 bp, overlapping subreads are used. More conventional alignment algorithms are then used to fill in detailed mismatch and indel information between the subreads that make up the winning voting block. The strategy is fast because the overall genomic location has already been chosen before the detailed alignment is done. It is sensitive because no individual subread is required to map exactly, nor are individual subreads constrained to map close by other subreads. It is accurate because the final location must be supported by several different subreads. The strategy extends easily to find exon junctions, by locating reads that contain sets of subreads mapping to different exons of the same gene. It scales up efficiently for longer reads.
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-06-22
    Description: On 2008 October 5, a magnitude 6.6 earthquake struck the eastern termination of the intermontane Alai valley between the southern Tien Shan and the northern Pamir of Kyrgyzstan. The shallow thrust earthquake occurred in the footwall of the Main Pamir thrust, where the Pamir orogen is colliding with the southern Tien Shan mountains. We measure the coseismic surface displacements using SAR (Synthetic Aperture RADAR) data; the results show clear gradients in the vertical and horizontal directions along a complex pattern of surface ruptures and active faults. To integrate and to interpret these observations in the context of the regional tectonics, we complement the SAR data analysis with seismological data and geological field observations. While the main moment release of the Nura earthquake appears to be on the Pamir Frontal thrust, the main surface displacements and surface rupture occurred in the footwall along the NE–SW striking Irkeshtam fault. With InSAR data from ascending and descending tracks along with pixel offset measurements, we model the Nura earthquake source as a segmented rupture. One fault segment corresponds to high-angle brittle faulting at the Pamir Frontal thrust and two more fault segments show moderate-angle and low-friction thrusting at the Irkeshtam fault. Our integrated analysis of the coseismic deformation argues for rupture segmentation and strain partitioning associated to the earthquake. It possibly activated an orogenic wedge in the easternmost segment of the Pamir-Alai collision zone. Further, the style of the segmentation may be associated with the presence of Palaeogene evaporites.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-06-28
    Description: The terrestrial reference frame is a cornerstone for modern geodesy and its applications for a wide range of Earth sciences. The underlying assumption for establishing a terrestrial reference frame is that the motion of the solid Earth's figure centre relative to the mass centre of the Earth system on a multidecadal timescale is linear. However, past international terrestrial reference frames (ITRFs) showed unexpected accelerated motion in their translation parameters. Based on this underlying assumption, the inconsistency of relative origin motions of the ITRFs has been attributed to data reduction imperfection. We investigated the impact of surface mass loading from atmosphere, ocean, snow, soil moisture, ice sheet, glacier and sea level from 1983 to 2008 on the geocentre variations. The resultant geocentre time-series display notable trend acceleration from 1998 onward, in particular in the z -component. This effect is primarily driven by the hydrological mass redistribution in the continents (soil moisture, snow, ice sheet and glacier). The acceleration is statistically significant at the 99 per cent confidence level as determined using the Mann–Kendall test, and it is highly correlated with the satellite laser ranging determined translation series. Our study, based on independent geophysical and hydrological models, demonstrates that, in addition to systematic errors from analysis procedures, the observed non-linearity of the Earth-system behaviour at interannual timescales is physically driven and is able to explain 42 per cent of the disparity between the origins of ITRF2000 and ITRF2005, as well as the high level of consistency between the ITRF2005 and ITRF2008 origins.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-07-29
    Description: This paper presents a novel mathematical reformulation of the theory of the free wobble/nutation of an axisymmetric reference earth model in hydrostatic equilibrium, using the linear momentum description. The new features of this work consist in the use of (i) Clairaut coordinates (rather than spherical polars), (ii) standard spherical harmonics (rather than generalized spherical surface harmonics), (iii) linear operators (rather than J-square symbols) to represent the effects of rotational and ellipticity coupling between dependent variables of different harmonic degree and (iv) a set of dependent variables all of which are continuous across material boundaries. The resulting infinite system of coupled ordinary differential equations is given explicitly, for an elastic solid mantle and inner core, an inviscid outer core and no magnetic field. The formulation is done to second order in the Earth's ellipticity. To this order it is shown that for wobble modes (in which the lowest harmonic in the displacement field is degree 1 toroidal, with azimuthal order m  = ±1), it is sufficient to truncate the chain of coupled displacement fields at the toroidal harmonic of degree 5 in the solid parts of the earth model. In the liquid core, however, the harmonic expansion of displacement can in principle continue to indefinitely high degree at this order of accuracy. The full equations are shown to yield correct results in three simple cases amenable to analytic solution: a general earth model in rigid rotation, the tiltover mode in a homogeneous solid earth model and the tiltover and Chandler periods for an incompressible homogeneous solid earth model. Numerical results, from programmes based on this formulation, are presented in part II of this paper.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-07-29
    Description: Numerical solutions are presented for the formulation of the linear momentum description of Earth's dynamics using Clairaut coordinates. We have developed a number of methods to integrate the equations of motion, including starting at the Earth's centre of mass, starting at finite radius and separating the displacement associated with the primary rigid rotation. We include rotation and ellipticity to second order up to spherical harmonic T $_5^m$ , starting with the primary displacement T $_1^m$ with m  = ±1. We are able to confirm many of the previous results for models PREM (with no surface ocean) and 1066A, both in their original form and with neutrally stratified liquid cores. Our period search ranges from the near-seismic band [0.1 sidereal days (sd)] to 3500 sd, within which we have identified the four well-known wobble-nutation modes: the Free Core Nutation (retrograde) at –456 sd, the Free Inner Core Nutation (FICN, prograde) at 468 sd, the Chandler Wobble (prograde) at 402 sd, and the Inner Core Wobble (ICW, prograde) at about 2842 sd (7.8 yr) for neutral PREM. The latter value varies significantly with earth model and integration method. In addition we have verified to high accuracy the tilt-over mode at 1 sd within a factor 10 –6 . In an exhaustive search we found no additional near-diurnal wobble modes that could be identified as nutations. We show that the eigenfunctions for the as-yet-unidentified ICW are extremely sensitive to the details of the earth model, especially the core stability profile and there is no well-defined sense of its wobble relative to the mantle. Calculations are also done for a range of models derived from PREM with homogeneous layers, as well as with incompressible cores. For this kind of model the ICW ceases to have just a simple IC rigid motion when the fluid compressibility is either unchanged or multiplied by a factor 10; in this case the outer core exhibits oscillations that arise from an unstable fluid density stratification. For the FICN our results for the truncation at harmonic T 5 show less change from the T 3 truncation than a similar result reported elsewhere. Finally, we give a thorough discussion of the complete spectrum of the characteristic determinant including the location of poles and non-wobble gravity modes, and discuss in general the dynamics of the inviscid core at periods short compared to those involved in the geodynamo.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-07-23
    Description: Considering the drawback of existing global weighted mean temperature model, this paper uses 2006–2012 NCEP reanalysis data to establish global empirical model for mapping zenith wet delays onto precipitable water—GTm_N, takes the influence of half-year periodicity of Tm into account when modelling and estimate the initial phase of each cycle. In order to evaluate the precision of GTm_N, we use three different Tm data sets from the NCEP during 2013, 650 radiosonde stations and COSMIC occultation in 2011 to test this model. The results show that GTm_N has higher precision in both ocean and continental area in every moment of every day. The accuracy of GTm_N is higher than Bevis formulas and GTm_II models. In addition, the actual surface temperature is not required in GTm_N model, and it will have wide application in GPS meteorology.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-01-20
    Description: The RNA transcriptome varies in response to cellular differentiation as well as environmental factors, and can be characterized by the diversity and abundance of transcript isoforms. Differential transcription analysis, the detection of differences between the transcriptomes of different cells, may improve understanding of cell differentiation and development and enable the identification of biomarkers that classify disease types. The availability of high-throughput short-read RNA sequencing technologies provides in-depth sampling of the transcriptome, making it possible to accurately detect the differences between transcriptomes. In this article, we present a new method for the detection and visualization of differential transcription. Our approach does not depend on transcript or gene annotations. It also circumvents the need for full transcript inference and quantification, which is a challenging problem because of short read lengths, as well as various sampling biases. Instead, our method takes a divide-and-conquer approach to localize the difference between transcriptomes in the form of alternative splicing modules (ASMs), where transcript isoforms diverge. Our approach starts with the identification of ASMs from the splice graph, constructed directly from the exons and introns predicted from RNA-seq read alignments. The abundance of alternative splicing isoforms residing in each ASM is estimated for each sample and is compared across sample groups. A non-parametric statistical test is applied to each ASM to detect significant differential transcription with a controlled false discovery rate. The sensitivity and specificity of the method have been assessed using simulated data sets and compared with other state-of-the-art approaches. Experimental validation using qRT-PCR confirmed a selected set of genes that are differentially expressed in a lung differentiation study and a breast cancer data set, demonstrating the utility of the approach applied on experimental biological data sets. The software of DiffSplice is available at http://www.netlab.uky.edu/p/bioinfo/DiffSplice .
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-02-02
    Description: Template switching (TS) has been an inherent mechanism of reverse transcriptase, which has been exploited in several transcriptome analysis methods, such as CAGE, RNA-Seq and short RNA sequencing. TS is an attractive option, given the simplicity of the protocol, which does not require an adaptor mediated step and thus minimizes sample loss. As such, it has been used in several studies that deal with limited amounts of RNA, such as in single cell studies. Additionally, TS has also been used to introduce DNA barcodes or indexes into different samples, cells or molecules. This labeling allows one to pool several samples into one sequencing flow cell, increasing the data throughput of sequencing and takes advantage of the increasing throughput of current sequences. Here, we report TS artifacts that form owing to a process called strand invasion. Due to the way in which barcodes/indexes are introduced by TS, strand invasion becomes more problematic by introducing unsystematic biases. We describe a strategy that eliminates these artifacts in silico and propose an experimental solution that suppresses biases from TS.
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-08-09
    Description: Human leukocyte antigen (HLA) typing at the allelic level can in theory be achieved using whole exome sequencing (exome-seq) data with no added cost but has been hindered by its computational challenge. We developed ATHLATES, a program that applies assembly, allele identification and allelic pair inference to short read sequences, and applied it to data from Illumina platforms. In 15 data sets with adequate coverage for HLA-A, -B, -C, -DRB1 and -DQB1 genes, ATHLATES correctly reported 74 out of 75 allelic pairs with an overall concordance rate of 99% compared with conventional typing. This novel approach should be broadly applicable to research and clinical laboratories.
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-08-09
    Description: In developing B cells, the immunoglobulin heavy chain ( IgH ) locus is thought to move from repressive to permissive chromatin compartments to facilitate its scheduled rearrangement. In mature B cells, maintenance of allelic exclusion has been proposed to involve recruitment of the non-productive IgH allele to pericentromeric heterochromatin. Here, we used an allele-specific chromosome conformation capture combined with sequencing (4C-seq) approach to unambigously follow the individual IgH alleles in mature B lymphocytes. Despite their physical and functional difference, productive and non-productive IgH alleles in B cells and unrearranged IgH alleles in T cells share many chromosomal contacts and largely reside in active chromatin. In brain, however, the locus resides in a different repressive environment. We conclude that IgH adopts a lymphoid-specific nuclear location that is, however, unrelated to maintenance of allelic exclusion. We additionally find that in mature B cells—but not in T cells—the distal V H regions of both IgH alleles position themselves away from active chromatin. This, we speculate, may help to restrict enhancer activity to the productively rearranged V H promoter element.
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-04-14
    Description: Polymorphisms in the target mRNA sequence can greatly affect the binding affinity of microarray probe sequences, leading to false-positive and false-negative expression quantitative trait locus (QTL) signals with any other polymorphisms in linkage disequilibrium. We provide the most complete solution to this problem, by using the latest genome and exome sequence reference data to identify almost all common polymorphisms (frequency 〉1% in Europeans) in probe sequences for two commonly used microarray panels (the gene-based Illumina Human HT12 array, which uses 50-mer probes, and exon-based Affymetrix Human Exon 1.0 ST array, which uses 25-mer probes). We demonstrate the impact of this problem using cerebellum and frontal cortex tissues from 438 neuropathologically normal individuals. We find that although only a small proportion of the probes contain polymorphisms, they account for a large proportion of apparent expression QTL signals, and therefore result in many false signals being declared as real. We find that the polymorphism-in-probe problem is insufficiently controlled by previous protocols, and illustrate this using some notable false-positive and false-negative examples in MAPT and PRICKLE1 that can be found in many eQTL databases. We recommend that both new and existing eQTL data sets should be carefully checked in order to adequately address this issue.
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-04-14
    Description: We present Masai, a read mapper representing the state-of-the-art in terms of speed and accuracy. Our tool is an order of magnitude faster than RazerS 3 and mrFAST, 2–4 times faster and more accurate than Bowtie 2 and BWA. The novelties of our read mapper are filtration with approximate seeds and a method for multiple backtracking. Approximate seeds, compared with exact seeds, increase filtration specificity while preserving sensitivity. Multiple backtracking amortizes the cost of searching a large set of seeds by taking advantage of the repetitiveness of next-generation sequencing data. Combined together, these two methods significantly speed up approximate search on genomic data sets. Masai is implemented in C++ using the SeqAn library. The source code is distributed under the BSD license and binaries for Linux, Mac OS X and Windows can be freely downloaded from http://www.seqan.de/projects/masai .
    Keywords: Massively Parallel (Deep) Sequencing
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...