ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • American Institute of Physics (AIP)
  • Institute of Electrical and Electronics Engineers (IEEE)
  • PANGAEA
  • 2010-2014  (2)
  • 1985-1989
  • 1980-1984
  • 1970-1974
  • 1965-1969
  • 1925-1929
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    In:  IEEE Transactions on Geoscience and Remote Sensing, 51 (6). pp. 3306-3318.
    Publication Date: 2020-07-29
    Description: Considering the sea ice decline in the Arctic during the last decades, polynyas are of high research interest since these features are core areas of new ice formation. The determination of ice formation requires accurate retrieval of polynya area and thin-ice thickness (TIT) distribution within the polynya. We use an established energy balance model to derive TITs with MODIS ice surface temperatures (Ts) and NCEP/DOE Reanalysis II in the Laptev Sea for two winter seasons. Improvements of the algorithm mainly concern the implementation of an iterative approach to calculate the atmospheric flux components taking the atmospheric stratification into account. Furthermore, a sensitivity study is performed to analyze the errors of the ice thickness. The results are the following: 1) 2-m air temperatures (Ta) and Ts have the highest impact on the retrieved ice thickness; 2) an overestimation of Ta yields smaller ice thickness errors as an underestimation of Ta; 3) NCEP Ta shows often a warm bias; and 4) the mean absolute error for ice thicknesses up to 20 cm is ±4.7 cm. Based on these results, we conclude that, despite the shortcomings of the NCEP data (coarse spatial resolution and no polynyas), this data set is appropriate in combination with MODIS Ts for the retrieval of TITs up to 20 cm in the Laptev Sea region. The TIT algorithm can be applied to other polynya regions and to past and future time periods. Our TIT product is a valuable data set for verification of other model and remote sensing ice thickness data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    In:  Journal of Renewable and Sustainable Energy, 6 (1). Art.-Nr.: 013116.
    Publication Date: 2021-06-23
    Description: Eutrophication combined with climate change has caused ephemeral filamentous macroalgae to increase and drifts of seaweed cover large areas of some Baltic Sea sites during summer. In ongoing projects, these mass occurrences of drifting filamentous macroalgae are being harvested to mitigate eutrophication, with preliminary results indicating considerable nutrient reduction potential. In the present study, an energy assessment was made of biogas production from the retrieved biomass for a Baltic Sea pilot case. Use of different indicators revealed a positive energy balance. The energy requirements corresponded to about 30%–40% of the energy content in the end products. The net energy gain was 530–800 MJ primary energy per ton wet weight of algae for small-scale and large-scale scenarios, where 6 000 and 13 000 tonnes dwt were harvested, respectively. However, the exergy efficiency differed from the energy efficiency, emphasising the importance of taking energy quality into consideration when evaluating energy systems. An uncertainty analysis indicated parametric uncertainty of about 25%–40%, which we consider to be acceptable given the generally high sensitivity of the indicators to changes in input data, allocation method, and system design. Overall, our evaluation indicated that biogas production may be a viable handling strategy for retrieved biomass, while harvesting other types of macroalgae than red filamentous species considered here may render a better energy balance due to higher methane yields.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...