ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration
  • 2010-2014  (1,728)
  • 1990-1994  (219)
  • 1
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: Scientific American (ISSN 0036-8733); Volume 263; 4; 78-84
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Gaia hypothesis states that the atmosphere, hydrosphere, surface sediments, and life on Earth behave dynamically as a single integrated physiological system. What has been traditionally viewed as the passive environment is a highly active, integral part of the gaian system. Aspects of the surface temperature and chemistry are regulated by the sum of life, the biota. Formulated first by James E. Lovelock, in the late 1960s, the Gaia hypothesis has been in the scientific literature for more than 25 years. Because of its properties of exponential growth and propagation, life is a powerful geologic force. A useful aspect of the Gaia idea is that it requires integration of scientific disciplines for the study of Earth. The recently touted Earth system science is broadly parallel with the gaian concept of the physiochemical regulation of Earth's surface. We discuss here, in a gaian context, the colonization of Mars by Earth organisms. Although colonizing Mars may be impossible, its accomplishment would be exactly equivalent to "the reproduction of Gaia by budding.".
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSA today : a publication of the Geological Society of America (ISSN 1052-5173); Volume 3; 11; 277-80, 291
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Allan Hills (ALH) 84001 is the most recently recognized member of a suite of meteorites--the SNCs--that almost certainly originated on Mars. Several factors distinguish ALH84001 from the other SNC meteorites. Preliminary studies suggest that it may be older than other martian meteorites. Moreover, it contains abundant, zoned domains of calcium-iron-magnesium carbonate that are indigenous to the sample and thus may hold important clues regarding near-surface processes on Mars and the evolution of the martian atmosphere. We report here analyses of the carbon and oxygen stable-isotope compositions of the carbonates that place constraints on their formation conditions. Our results imply the presence of at least two chemically distinct carbonates--one Ca,Fe-rich, the other Mg-rich--that are enriched in 13C relative to terrestrial carbonates (delta 13C approximately +41/1000), consistent with martian atmospheric CO2 as the carbon source. The oxygen isotope compositions of the carbonates indicate that they precipitated from a low-temperature fluid in the martian crust. Combined with textural and bulk geochemical considerations, the isotope data suggest that carbonate deposition took place in an open-system environment in which the ambient temperature fluctuated.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature (ISSN 0028-0836); Volume 372; 6507; 655-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: We have examined a Hawaiian palagonitic tephra sample (PN-9) that has spectroscopic similarities to Martian bright regions using a number of analytical techniques, including Mossbauer and reflectance spectroscopy, X-ray diffraction, instrumental neutron activation analysis, electron probe microanalysis, transmission electron microscopy, and dithionite-citrate-bicarbonate extraction. Chemically, PN-9 has a Hawaiitic composition with alkali (and presumably silica) loss resulting from leaching by meteoric water during palagonitization; no Ce anomaly is present in the REE pattern. Mineralogically, our results show that nanophase ferric oxide (np-Ox) particles (either nanophase hematite (np-Hm) or a mixture of ferrihydrite and np-Hm) are responsible for the distinctive ferric doublet and visible-wavelength ferric absorption edge observed in Mossbauer and reflectivity spectra, respectively, for this and other spectrally similar palagonitic samples. The np-Ox particles appear to be imbedded in a hydrated aluminosilicate matrix material; no evidence was found for phyllosilicates. Other iron-bearing phases observed are titanomagnetite, which accounts for the magnetic nature of the sample; olivine; pyroxene; and glass. By analogy, np-Ox is likely the primary pigmenting agent of the bright soils and dust of Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Geochimica et cosmochimica acta (ISSN 0016-7037); Volume 57; 19; 4597-609
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: We discuss over 120 laboratory experiments pertaining to the identification of the new absorption band discovered by Trafton et al. (1991) at 4705.2 cm-1 (2.1253 micrometers) in the spectrum of Io. It is shown that this band is not due to overtones or combinations of the fundamental bands associated with the molecules (or their chemical complexes) already identified on Io, namely, SO2, H2S, and H2O. Thus, this band is due to a new, previously unidentified, component of Io. Experiments also demonstrate that the band is not due to molecular H2 frozen in SO2 frosts. Since the frequency of this band is very close to the first overtone of the nu 3 asymmetric stretching mode of CO2, we have investigated the spectral behavior of CO2 under a variety of conditions appropriate for Io. The profile of the Io band is not consistent with the rotational envelope expected for single, freely rotating, gaseous CO2 under Io-like conditions. It was found that pure, solid CO2 and CO2 intimately mixed in a matrix of solid SO2 and H2S produce bands with similar widths (5-10 cm-1), but that these bands consistently fall at frequencies about 10-20 cm-1 (approximately 0.007 micrometer) lower than the Io band. CO2 in SO2 : H2S ices also produces several additional bands that are not in the Io spectra. The spectral fit improves, however, as the CO2 concentration in SO2 increases, suggesting that CO2-CO2 interactions might be involved. A series of Ar : CO2 and Kr : CO2 matrix isolation experiments, as well as laboratory work done elsewhere, show that CO2 clustering shifts the band position to higher frequencies and provides a better fit to the Io band. Various laboratory experiments have shown that gaseous CO2 molecules have a propensity to cluster between 80 and 100 K, temperatures similar to those found on the colder regions of Io. We thus tentatively identify the newly discovered Io band at 4705.2 cm-1 (2.1253 micrometers) with CO2 multimers or "clusters" on Io. Whether these clusters are buried within an SO2 frost, reside on the surface, or are in a residual, steady-state "atmospheric aerosol" population over local coldtraps is not entirely clear, although we presently favor the latter possibility. The size of these clusters is not well defined, but evidence suggests groups of more than four molecules are required. The absorption strength of the 2 nu 3 CO2 cluster overtone determined in the laboratory, in conjunction with the observed strength of the Io band, suggests that the disk-integrated abundance of CO2 is less than 1% that of the SO2. Studies of the sublimation behavior of CO2 indicate that it probably resides predominantly in the cooler areas (〈 100 K) of Io. The relative constancy of the Io feature over a variety of orbital phases suggests that the polar regions may contain much of the material. Some consequences of the physical properties of CO2 under conditions pertinent to Io are discussed. The presence of CO2 clusters on Io could be verified by the detection of any one of several other infrared bands associated with the CO2 molecule, of which the strongest are the nu 3 12CO2 asymmetric stretch fundamental near 2350 cm-1 (4.25 micrometers) and the nu 2 bending mode fundamental near 660 cm-1 (15.1 micrometers). Weaker bands that may also be detectable include the nu 3 13CO2 asymmetric stretch fundamental near 2280 cm-1 (4.39 micrometers), the 2 nu 2 + nu 3 combination/overtone band near 3600 cm-1 (2.78 micrometers), and the nu 1 + nu 3 combination band near 3705 cm-1 (2.70 micrometers).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus (ISSN 0019-1035); Volume 91; 125-44
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: Since H3+ was first spectroscopically detected on Jupiter, there has been considerable interest in using this simple molecular ion to probe conditions existing in the planet's auroral regions. Here we present a series of images of Jupiter recorded at wavelengths sensitive to emission by H3+, which reveal the spatial distribution of excited H3+ molecular ions in the jovian ionosphere, as seen from Earth. We believe that they provide high-spatial-resolution images of polar aurorae on Jupiter. They suggest that the intensity of the auroral emission can vary on a timescale of an hour, a shorter period than had previously been noted. We also find that the spatial distribution of H3+ emissions correlates only partially with the loci of auroral activity inferred from ultraviolet and longer-wavelength infrared observations. The H3+ emission may therefore be controlled by auroral processes that are different from those responsible for the ultraviolet and infrared emissions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature (ISSN 0028-0836); Volume 353; 539-42
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: Selective thermal modulation (STM) is a technique which produces a concentration-dependent pulse by selectively modulating a sample in a gas stream. Several types of modulation techniques, both chemical and physical, using adsorption, decomposition, and catalytic and mechanical methods have been developed for use with multiplex gas chromatography. Two of these applications involve selective modulation of the components present in the sample gas stream. The selective modulation of the concentration of specific sample molecules or classes of molecules provides additional analytical selectivity which can lead to selective detection. For some specific applications, the column may even be eliminated. Chemical modulation by absorption of a substance from the sample stream by a stationary phase will also produce a change in the signal intensity. Removal of a substance from the sample stream results in a signal containing a vacancy peak. In the work reported here, a selective thermal modulation technique has been developed as a method for determination of water vapor for possible use in Mars' atmosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of high resolution chromatography : HRC (ISSN 0935-6304); Volume 13; 835-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: The fullerenes C60 and C70 have been found to occur naturally on Earth and have also been invoked to explain features in the absorption spectra of interstellar clouds. But no definitive spectroscopic evidence exists for fullerenes in space and attempts to find fullerenes in carbonaceous chondrites have been unsuccessful. Here we report the observation of fullerenes associated with carbonaceous impact residue in a crater on the Long Duration Exposure Facility (LDEF) spacecraft. Laser ionization mass spectrometry and Raman spectroscopy indicate the presence of fullerenes in the crater and in adjacent ejecta. Man-made fullerenes survive experimental hypervelocity (approximately 6.1 km s-1) impacts into aluminium targets, suggesting that space fullerenes contained in a carbonaceous micrometeorite could have survived the LDEF impact at velocities towards the lower end of the natural particle encounter range (〈13 km s-1). We also demonstrate that the fullerenes were unlikely to have formed as instrumental artefacts, nor are they present as contaminants. Although we cannot specify the origin of the fullerenes with certainty, the most plausible source is the chondritic impactor. If, alternatively, the impact produced the fullerenes in situ on LDEF, then this suggests a viable mechanism for fullerene production in space.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature (ISSN 0028-0836); Volume 369; 37-40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: A series of surface-modified clays containing nanophase (np) iron oxide/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these "Mars-soil analogs" were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging, specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The clay acted as an effective matrix, both chemically and sterically, preventing the major part of the synthesized iron oxides from ripening, i.e., growing and developing larger crystals. The precipitated iron oxides appear as isodiametric or slightly elongated particles in the size range 1-10 nm, having large specific surface area. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxy mineral such as "green rust," or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable maghemite (gamma-Fe2O3) by mild heat treatment and then to nanophase hematite (alpha-Fe2O3) by extensive heat treatment. After mild heating, the iron-enriched clay became slightly magnetic, to the extent that it adheres to a hand-held magnet, as was observed with Mars soil. The chemical reactivity of the iron-enriched clays strongly resembles, and offers a plausible mechanism for, the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxides and silicate phase surfaces. The reflectance spectrum of the clay-iron preparations in the visible range is generally similar to the reflectance curves of bright regions on Mars. This strengthens the evidence for the predominance of nanophase iron oxides/oxyhydroxides in Mars soil. The mode of formation of these nanophase iron oxides on Mars is still unknown. It is puzzling that despite the long period of time since aqueous weathering took place on Mars, they have not developed from their transitory stage to well-crystallized end-members. The possibility is suggested that these phases represent a continuously on-going, extremely slow weathering process.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of geophysical research (ISSN 0148-0227); Volume 98; E11; 20,831-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: A comet-impact model for Mars uses the current atmosphere with argon as the index volatile and assumes a surface pressure of about 40 mb. The model also allows for changes in surface pressure. The model is based on analysis of gases trapped in Shergottite and Nakhlite meteorites. Tests of the model include the identification of noble gases in comets and the presence of nitrogen compounds in Jupiter identified by the Galileo probe.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences (ISSN 0080-4614); Volume 349; 209-11; discussion 212
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...