ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: In this paper we present and discuss an improved picture of the seismicity distribution of the Umbria– Marche–Abruzzi Apennines as obtained through the integration of the national and the regional seismic networks operating from 2002 to 2006. During this period, both the Istituto Nazionale di Geofisica e Vulcanologia (INGV) National Seismic Network and the regional networks have been greatly improved. We compare the results of the integrated catalogue obtained in this study with the Catalogue of the Italian Seismicity between 1981 and 2001 [Castello, B., Selvaggi, G., Chiarabba, C., Amato, A., 2006. CSI Catalogo della sismicità italiana 1981–2002, versione 1.1. INGV-CNT, Roma.http://legacy.ingv.it/CSI )], confirming the basic known features of the seismic activity in the region, but also evidencing some original and interesting results. In particular, the new data set allows us to better define the geometry and kinematics of the crustal seismicity, which is confined to the upper 20 km and shows a clear general deepening from west to east. In the crust, we find additional evidence of extensional seismicity below the central portion of the belt and thrust/reverse faulting mechanisms at the outer fronts of the Apennines. Looking at the seismicity along the belt, it is also possible to observe aseismic regions, which could be due to either locked or creeping portions of the Apenninic fault system. At greater depth, the west-dipping seismicity distribution down to about 70 km confirms the hypothesis of a slab of Adriatic lithosphere subducted below the Apennines, but also suggests that there are strong lateral heterogeneities and possibly tears in the slab.
    Description: Published
    Description: 121-135
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Seismicity ; Seismic monitoring ; Focal mechanisms ; Subduction ; Apennines ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We present an overview of the seismogenic source model of the Adriatic domain included in the latest version of the DISS database (http://diss.rm.ingv.it/diss/) and in the European SHARE database (http://diss.rm.ingv.it/SHARE/). The model consists of Composite and Individual Seismogenic Sources located inside and along the margins of the Adria plate. In order to locate and parameterize the sources, we integrated a wide set of geological, geophysical, seismological and geodynamic data, either available from published literature or resulting from our own field work, seismic profile interpretations and numerical modelling studies. We grouped the sources into five regions based on geometrical and kinematic homogeneity criteria. Seismogenic sources of the Central Western Adriatic, North-Eastern Adriatic, Eastern Adriatic and Central Adriatic regions belong to the Northern Apennines, External Dinarides and offshore domains, respectively. They are characterized by NWeSE strike, reverse to oblique kinematics and shallow crustal seismogenic depth. Seismogenic sources of the Southern Western Adriatic region instead are EeW striking, dextral strike-slip faults, cutting both the upper and lower crust. The fastest moving seismogenic sources are the most southern thrusts of the Eastern Adriatic and the strike-slip sources of the Southern Western Adriatic, while the seismogenic sources of the Central Adriatic exhibit the lowest slip rates. Estimates of maximum magnitude are generally in good agreement with the historical and instrumental earthquake records, except for the North-Eastern Adriatic region, where seismogenic sources exhibit a potential for large earthquakes even though no strong events have been reported or registered. All sources included in the database are fully geometrically and kinematically parameterized and can be incorportaed in seismic hazard calculations and earthquake or tsunami scenario simulations.
    Description: Published
    Description: 191-213
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: Active tectonics ; Seismogenic sources ; Apennines ; External Dinarides ; Adriatic domain ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The main goal of this study is to provide moment tensor solutions for small and moderate earthquakes of the Matese seismic sequence in southern Italy for the period of December 2013–January 2014. We estimate the focal mechanisms of 31 earthquakes with local magnitudes related to the Matese earthquake seismic sequence (December 2013–January 2014) in Southern-Central Italy which are recorded by the broadband stations of the Italian National Seismic Network and the Mediterranean Very Broadband Seismographic Network (MedNet) run by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The solutions show that normal faulting is the prevailing style of seismic deformation in agreement with the local faults mapped outin the area. Comparisons with already published solutions and with seismological and geological information available allowed us to properly interpret the moment tensor solutions in the frame of the seismic sequence evolution and also to furnish additional information about less energetic seismic phases. Focal data were inverted to obtain the seismogenic stress in the study area. The results are compatible with the major tectonic domain of the area.
    Description: Published
    Description: 118-124
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Moment tensors ; Southern Italy ; Apennines ; Stress inversion ; Seismicity and tectonics ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We present an improved evaluation of the current strain and stress fields in Southern Apennines (Italy) obtained through a careful analysis of geodetic, seismological and borehole data. In particular, our analysis provides an updated comparison between the accrued strain recorded by geodetic data, and the strain released by seismic activity in a region hit by destructive historical earthquakes. To this end, we have used 9 years of GPS observations (2001-2010) from a dense network of permanent stations, a dataset of 73 well constrained stress indicators (borehole breakouts and focal mechanisms of moderate to large earthquakes), and published estimations of the geological strain accommodated by active faults in the region. Although geodetic data are generally consistent with seismic and geologic information, previously unknown features of the current deformation in southern Italy emerge from this analysis. The newly obtained GPS velocity field supports the well-established notion of a dominant NE-SW-oriented extension concentrated in a ~50 km wide belt along the topographic relief of the Apennines, as outlined by the distribution of seismogenic normal faults. Geodetic deformation is, however, non uniform along the belt, with two patches of higher strain-rate and shear stress accumulation in the north (Matese Mountains) and in the south (Irpinia area). Low geodetic strain-rates are found in the Bradano basin and Apulia plateau to the east. Along the Ionian Sea margin of southern Italy, in southern Apulia and eastern Basilicata and Calabria, geodetic velocities indicate NW-SE extension which is consistent with active shallow-crustal gravitational motion documented by geological studies. In the west, along the Tyrrhenian margin of the Campania region, the tectonic geodetic field is disturbed by volcanic processes. Comparison between the magnitude of the geodetic and the seismic strain-rates (computed using a long historical seismicity catalogue) allow detecting areas of high correlation, particularly along the axis of the mountain chain, indicating that most of the geodetic strain is released by earthquakes. This relation does not hold for the instrumental seismic catalogue, as a consequence of the limited time span covered by instrumental data. In other areas (e.g. Murge plateau in central Apulia), where seismicity is very low or absent, the yet appreciable geodetic deformation might be accommodated in aseismic mode. Overall, the excellent match between the stress and the strain-rate directions in much of the Apennines indicates that both earthquakes and ground deformation patterns are driven by the same crustal forces.
    Description: Published
    Description: 1270-1282
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Satellite geodesy ; Plate motions ; Neotectonics ; Europe ; Apennines ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: According to the most common interpretation, the Apennines developed in Neogene and Quaternary times in the hanging wall of a west directed subduction zone. Seismic tomography is the most powerful tool to investigate large volume of Earth at depth, and it has been extensively applied to shed light on the geometry and shape of the subduction under the Italian peninsula. The various experiments were able to display the slab under the Southern Apennines, but even the most recent tomographic images were non-uniquely interpretable and left open questions about the characteristics of the subduction in the Northern-Central sector of the chain. We here present the results of an improved inversion experiment focused on the Northern and Central Apennines. The results do not show any pronounced subduction slab and the most evident anomaly is a low velocity body extending down to 100 km depth, located in a relatively small area under the western Tuscany. On the basis of accurate synthetic tests, we assess that, if established, a subduction like geometry should be visible in our tomographic images. We then conclude that no subduction is imaged in the Northern and Central Apennines. We thus interpret this anomaly as an asthenospheric flow. However, we cannot exclude that our result is due to intrinsic limitations of the methodology. In fact in response to the original question about the capability of local earthquake tomography to settle the matter about subduction, we underline that the absence of deep earthquakes to illuminate the model from below, the existence of seismic gaps in some sectors of the area under study even at shallow depth and the non uniqueness of interpretation of the tomographic images make local tomography unable to give alone definitive information on the deep structure of the Northern and Central Apennines.
    Description: Published
    Description: 63-73
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic tomography ; Apennines ; Subduction ; Asthenospheric upwelling ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: High-resolution tomography from the 2009 L’Aquila extensional seismic sequence has shown that the Mw 6.1 main shock and most of the aftershocks occurred within a high velocity body (6.6≤Vp≤6.8 Km/s), located between depths of 3 and 12 km. The nature of the high Vp-body has remained speculative, although exhumed mafic deep crustal and upper mantle rocks (serpentinites) have been favoured. We used 3D magnetic anomaly modelling to investigate the plausibility of these favoured sources for the L’Aquila body. The modelling does not support the presence of high-velocity serpentinites with a 30-50% serpentinization degree and gabbros. Accordingly, we conclude that the high Vp-body may represent non-magnetic upper Triassic and possibly lower Liassic dolomites that have been drilled in neighbouring wells for 2-4 km. This conclusion is also consistent with the lack of a coherent gravity anomaly for the body. We speculate that ultra-thick Triassic dolomites reaching a thickness of 8 km may have been deposited in syntectonic wedges formed at the northern margin of the Ionian Sea, where oceanic spreading occurred in mid-late Triassic times.
    Description: Published
    Description: 6756–6770
    Description: 7A. Geofisica di esplorazione
    Description: JCR Journal
    Description: restricted
    Keywords: L’Aquila earthquake ; seismic tomography ; magnetic anomalies ; magnetic modelling ; dolomites; ; Apennines ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We analyze seismicity occurred in the 2007-2011 period on the border between the NW-SE striking central and southern Apennines (central Italy), characterized by the transition between two aligned antithetic normal fault systems. These regional fault sets include large seismogenic sources, causative of major earthquakes in the area, SW-dipping to the north, NE-dipping to the south, respectively. We (a) investigate the accommodation zone and the linkage between the SW-dipping Aremogna-Cinque Miglia (to the north) and NE-dipping Boiano Basin (to the south) sources, and (b) test whether the transfer zone model applies to the central-southern Apennines border. The epicentral distribution of the relocated earthquakes (1.6〈MD〈 3.4) well matches events occurred in the area in the previous ten years. Seismicity is made of single events and low magnitude swarms, with hypocenters within the upper 12-13 km. Swarms are located along a ~NNE-SSW trend, coincident with a section of the Ortona-Roccamonfina Line, a regional transverse lineament, and encircle the area where the accommodation zone would occur. Focal mechanisms of single events (MD〉3.0) show both dip-slip and strike-slip motion, with T-axes NE-SW striking, consistent with the large-scale stress field controlling the Apennine Chain. Focal mechanisms of the swarms’ most energetic events show dip-slip motion, with T-axes ~NNW-SSE striking, coherent with local NW-SE extension hypothesized in this sector. Based on spatiotemporal characteristics of the seismicity, geometry and kinematics of active faulting in the region, and results from previous geophysical studies, we hypothesize (a) an accommodation zone between the Aremogna-Cinque Miglia and Boiano Basin sources, and (b) the activity of such linkage along the Ortona-Roccamonfina Line. We infer that the dip switch between the two antithetic seismogenic normal fault systems could also result from the rheologic and tectonic control exerted by the passage between two diverse paleogeographic domains composing the border between the central and southern Apennines.
    Description: MIUR (Italian Ministry of Research) FIRB Project “Piattaforma di ricerca multidisplinare su terremoti e vulcani (AIRPLANE)”
    Description: Submitted
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: seismogenic sources ; seismic swarm ; transverse lineaments ; dip switch ; Apennines ; Italy ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We present the velocity field in Italy derived from over 300 continuous GPS stations operated in the 1998– 2009 time span. The GPS network maps the whole country with a mean inter-site distance of about 50 km and provides a valuable source of data to study the ongoing deformation processes in the central Mediterranean. The estimated horizontal and vertical velocity fields show major significant features and also less known second-order kinematic features. A general uplift characterizes the whole Apennines and Alpine belts that follow the topographic ridge, whereas the Po Plain shows a gradually increasing subsidence from west to east. The Apennines belt displays a distinctive extension (50–80 10−9 yr−1)while compressive tectonic regimes characterize northern Sicily, eastern Alps and the northeast front of the northern Apennines (25–50 10−9 yr−1). Second-order deformation patterns, on large scale wavelength (~100 km) have been detected on the accretionary prism of central and southern Apennines that are highly correlated with other geophysical data (Vp anomalies, seismic anisotropy, etc.) and related to deep rooted sections (70– 100 km), marked by different subduction regimes. Apparently at this scale-length the observed deformations are governed by the lithosphere as a whole. We interpret these deformations as a result of different subduction mechanisms, such as variations of the subduction rollback velocity affecting different segments of the subduction zone and/or to mantle flows in proximity of the slab edges. Further south, in central-southern Sicily, we detect a contraction of (−1.1±0.2) mm/yr that probably accommodates part of the Africa–Eurasia convergence on the outer thrust front of the Apennines–Maghrebides belt. This hypothesis agrees with an independent analysis of the seismicity associated to the Sicilian Basal Thrust, thought to be still active. The ITRF2005 estimates of the new GPS velocity field are available also in SINEX format as supplementary file S1.
    Description: Published
    Description: 230-241
    Description: 1.9. Rete GPS nazionale
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: GPS velocity field ; Apennines ; Alps ; Adria ; Plate kinematics ; Subduction zone ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The inversion of multitemporal DInSAR and GPS measurements unravels the coseismic and postseismic (afterslip) slip distributions associated with the 2009 MW 6.3 L’Aquila earthquake and provides insights into the rheological properties and long-term behavior of the responsible structure, the Paganica fault. Well-resolved patches of high postseismic slip (10–20 cm) appear to surround the main coseismic patch (maximum slip ≈1 m) through the entire seismogenic layer above the hypocenter without any obvious depth-dependent control. Time series of postseismic displacement are well reproduced by an exponential function with best-fit decay constants in the range of 20–40 days. A sudden discontinuity in the evolution of released postseismic moment at ≈130 days after the main shock does not correlate with independent seismological and geodetic data and is attributed to residual noise in the InSAR time series. The data are unable to resolve migration of afterslip along the fault probably because of the time interval (six days) between the main shock and the first radar acquisition. Surface fractures observed along the Paganica fault follow the steepest gradients of postseismic line-of-sight satellite displacements and are consistent with a sudden and delayed failure of the shallow layer in response to upward tapering of slip. The occurrence of afterslip at various levels through the entire seismogenic layer argues against exclusive depth-dependent variations of frictional properties on the fault, supporting the hypothesis of significant horizontal frictional heterogeneities and/or geometrical complexities. We support the hypothesis that such heterogeneities and complexities may be at the origin of the long-term variable behavior suggested by the paleoseismological studies. Rupture of fault patches with dimensions similar to that activated in 2009 appears to have a ≈500 year recurrence time interval documented by paleoseismic and historical studies. In addition to that, paleoseismological evidence of large (〉0.5 m) coseismic offsets seems to require seismic events, recurring every 1000–2000 years, characterized by (1) multisegment linkage, (2) surface ruptures larger than in 2009, and (3) complete failure of the 2009 coseismic and postseismic patches.
    Description: Published
    Description: B02402
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Afterslip ; L'Aquila ; Apennines ; postseismic ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Here I compare estimates of tectonic strain rates from dense Global Positioning System measurements with the seismicity released in the last ~500 years in the Apennines (Italy). The rates of seismic moment accumulation from geodesy and of historical seismic release by earthquakes agree within the uncertainties, ruling out significant aseismic deformation. Within the considered 400 km long section of the Apennines, this balance yields an average recurrence interval of 30–75 years for MW≥6.5 events without requiring a future earthquake larger than those observed historically (MW~7). A minimum estimate of unreleased strain allows MW≥6.5 and MW≥6.9 events to be released in ~35% and ~10% of the central-southern Apennines, respectively. The definition of the seismic potential for smaller events is more uncertain, and their occurrence remains a significant threat throughout the Apennines.
    Description: Published
    Description: 1155–1162
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Crustal deformation ; Earthquakes ; GPS ; Apennines ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: The many studies conducted on the Italian area led to several models to explain the present-day structural setting. Some of the most debated questions are the presence or not of continuous subduction and the presence or not of a slab detachment in the northern or in the central part of the Apenninic chain. The absence of a continuous, high velocity body beneath the Apennines has been interpreted by some researchers as an evidence of the detachment of the Apenninic slab. According to this view the Apenninic slab is expected to be inactive whether the Ionian lithosphere subducting underneath Calabria is considered to be on the verge of detaching or just detached. Other researchers however, suggest that a fairly continuous and fast slab exists beneath the Apennines and the Calabrian arc. Different geodynamical models have also been proposed for the Tyrrhenian area considering it as an active or as a passive margin. Our working group has conducted several seismic tomographies in the search of the geometry, size and extension with depth of the subduction under the Italian peninsula. While the images resulting from teleseismic data were clearly showing a subducting slab under the Calabrian arc, they were not conclusive for the rest of the Apennines since they were showing, only in the Northern sector, a likely subduction in the shallower part apparently detached from other high velocities body in the deeper zone. At that stage it was not possible to distinguish between thrust and subduction due to the poor horizontal resolution of the applied methodology. In order to analyze in more details this apparent discrepancy, a new seismic local tomography has been conducted with a very dense grid, the selection of a smaller area to be investigated (limited to the Apennines only) and the addition of new data: all these features contributed to partly improve the results, which cannot anyway extend beyond the maximum depth of seismic events. The main limitation in this kind of experiment is the lack of seismic events deeper than 60-70 km under the northern and central Apennines although, as many authors assume, is not itself an evidence against subduction. Analyzing different cross sections of the enhanced resolution tomography results, we do not see any slab in the northern-central Apennines in the first 80-100 km depth. The downgoing material (Adriatic plate) of this area has a rather low dip angle, as also partly shown by the distribution of the (few) deep seismic events. Along the central and also the northern part of the Apennines there are more overlapping than subducting geometries.
    Description: Published
    Description: Montpellier, France
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: Tomography ; Apennines ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Geological Society of America
    Publication Date: 2022-06-14
    Description: In central Italy, the geometry, kinematics, and tectonic evolution of the late Neogene Umbrian Arc, which is one of the main thrusts of the northern Apennines, have long been studied. Documented evidence for orogenic curvature includes vertical axis rotations along both limbs of the arc and a positive orocline test along the entire arc. The cause of the curvature is, however, still unexplained. In this work, we focus our attention on the southern portion of the Umbrian Arc, the so-called Olevano- Antrodoco thrust. We analyze, in particular, gravity and seismic-reflection data and consider available paleomagnetic, stratigraphic, structural, and topographic evidence from the central Apennines to infer spatial extent, attitude, and surface effects of a midcrustal anticlinorium imaged in the CROP-11 deep seismic profile. The anticlinorium has horizontal dimensions of ~50 by 30 km, and it is located right beneath the Olevano- Antrodoco thrust. Stratigraphic, structural, and topographic evidence suggests that the anticlinorium produced a surface uplift during its growth in early Pliocene times. We propose an evolutionary model in which, during late Neogene time, the Olevano- Antrodoco thrust developed in an out-of sequence fashion and underwent ~16° of clockwise rotation when the thrust ran into and was then raised and folded by the growing anticlinorium (late Messinian–early Pliocene time). This new model suggests a causal link between midcrustal folding and surficial orogenic curvature that is consistent with several available data sets from the northern and central Apennines; more evidence is, however, needed to fully test our hypothesis. Additionally, due to the occurrence of midcrustal basement-involved thrusts in other orogens, this model may be a viable mechanism for arc formation elsewhere.
    Description: Published
    Description: 1409-1420
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: oroclines ; Apennines ; fold and thrust belts ; gravity anomalies ; seismic reflection profiles ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-24
    Description: Series of multiple main shocks that develop on adjacent faults is a typical way in which active extension is accommodated in the Apennines of Italy. This behaviour is explained by fault interaction that occurs at a scale ranging from seconds to days, yielding a space–time clustering of earthquakes, termed as earthquake storms. We show that the seismic energy released by historical earthquakes in central Apennines is clustered into two main small time periods, around 600 and 300 years ago, during which a great portion of the normal faulting belt failed. We favour the hypothesis that clustering results from sudden input of deep fluids into the brittle upper crust. The roughly 300 years periodicity and the 3–4 mm year−1 of tectonic extension suggest that earthquake storms need to be taken into account in seismic hazard scenarios.
    Description: Published
    Description: 300–306
    Description: JCR Journal
    Description: restricted
    Keywords: Apennines ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-06-14
    Description: Paleoenvironmental and paleoclimate changes that occurred during the late postevaporitic stage of the Mediterranean Basin in the Messinian foreland domain of the Adriatic region offer a new perspective on the relationship between orbital forcing and climate response. The magnetic susceptibility record of the Fonte dei Pulcini A section (Maiella Mountains, Italy) allows us to orbitally tune the record between 5.394 and 5.336 Ma and to temporally constrain the paleoenvironmental and paleoclimate changes evidenced by quantitative paleontological (palynomorphs, ostracods, and calcareous nannofossils), stable isotope (δ18O and δ13C), and X-ray diffraction (XRD) analyses. The base of the Fonte dei Pulcini A section is characterized by Paratethyan ostracods and dinocysts, which point to the late Messinian Lago-Mare biofacies (Loxocorniculina djafarovi zone) of the Mediterranean Messinian stratigraphy. From paleontological and geochemical (δ18O) analyses, there is no evidence of a marine incursion in the Fonte dei Pulcini A section. The major changes in terms of paleodepth, paleosalinity, evaporation versus precipitation, aridity versus humidity, and reworking processes occurred in the upper part of the Fonte dei Pulcini A section, during the last Messinian insolation cycle (i-cycle 511/512), which is characterized by high-amplitude oscillations. In contrast, the lower part of the Fonte dei Pulcini A section, which was deposited during relatively low-amplitude insolation cycles, is characterized by more stable environmental conditions. Comparing summer insolation with the paleoenvironmental changes at the Fonte dei Pulcini A section, we identify delays of several thousands of years between orbital forcing and climate response.
    Description: Published
    Description: 499-516
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Messinian stage ; Lago-Mare event ; Maiella ; Apennines ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-24
    Description: Two different free-air gravity datasets from the Apennines have been analysed in the frequency domain to investigate the mechanisms of support of topography. At short wavelength (λ〈150 km) the best fit between the observed and the calculated admittance gives a value of the elastic thickness of 3.7 km. The observed behaviour of the admittance at larger wavelengths (λ〉150 km) shows that such topography is not supported by elastic stresses in the lithosphere but is dynamically supported by mantle convection. The distribution of gravity anomalies and topography suggests that the mantle is rising beneath the main topographic bulge of the Apennines and that this flow is maintained by buoyancy forces, rather than being driven by movement of the subducted slab.
    Description: Published
    Description: 228-233
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Dynamic Topography ; Gravity ; Apennines ; 04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...