ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6)
  • 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects  (6)
  • AGU  (4)
  • Copernicus  (2)
  • American Association for the Advancement of Science
  • American Institute of Physics (AIP)
  • 2010-2014  (6)
  • 1990-1994
  • 1980-1984
  • 1965-1969
  • 1925-1929
Collection
  • Articles  (6)
Years
  • 2010-2014  (6)
  • 1990-1994
  • 1980-1984
  • 1965-1969
  • 1925-1929
  • +
Year
  • 1
    Publication Date: 2017-04-04
    Description: Methane plays an important role in the Earth’s atmospheric chemistry and radiative balance being the second most important greenhouse gas after carbon dioxide. Methane is released to the atmosphere by a wide number of sources, both natural and anthropogenic, with the latter being twice as large as the former (IPCC, 2007). It has recently been established that significant amounts of geological methane, produced within the Earth’s crust, are currently released naturally into the atmosphere (Etiope, 2004). Active or recent volcanic/geothermal areas represent one of these sources of geological methane. But due to the fact that methane flux measurements are laboratory intensive, very few data have been collected until now and the contribution of this source has been generally indirectly estimated (Etiope et al., 2007). The Greek territory is geodynamically very active and has many volcanic and geothermal areas. Here we report on methane flux measurements made at two volcanic/geothermal systems along the South Aegean volcanic arc: Sousaki and Nisyros. The former is an extinct volcanic area of Plio-Pleistocene age hosting nowadays a low enthalpy geothermal field. The latter is a currently quiescent active volcanic system with strong fumarolic activity due to the presence of a high enthalpy geothermal system. Both systems have gas manifestations that emit significant amounts of hydrothermal methane and display important diffuse carbon dioxide emissions from the soils. New data on methane isotopic composition and higher hydrocarbon contents point to an abiogenic origin of the hydrothermal methane in the studied systems. Measured methane flux values range from –48 to 29,000 (38 sites) and from –20 to 1100 mg/mˆ2/d (35 sites) at Sousaki and Nisyros respectively. At Sousaki measurement sites covered almost all the degassing area and the diffuse methane output can be estimated in about 20 t/a from a surface of about 10,000 mˆ2. At Nisyros measurements covered the Stephanos and Kaminakia areas, which represent only a part of the entire degassing area. The two areas show very different methane degassing pattern with latter showing much higher flux values. Methane output can be estimated in about 0.25 t/a from an area of about 30,000 mˆ2 at Stephanos and about 1 t/a from an area of about 20,000 mˆ2 at Kaminakia. The total output from the entire geothermal system of Nisyros probably should not exceed 2 t/a.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: methane output ; diffuse degassing ; volcanic/hydrothermal systems ; Greece ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: A biomonitoring survey, above tree line level, using two endemic species (Senecio aethnensis and Rumex aethnensis) was performed on Mt. Etna, in order to evaluate the dispersion and the impact of volcanic atmospheric emissions. Samples of leaves were collected in summer 2008 from 30 sites in the upper part of the volcano (1500- 3000 m a.s.l). Acid digestion of samples was carried out with a microwave oven, and 44 elements were analyzed by using plasma spectrometry (ICP-MS and ICP-OES). The highest concentrations of all investigated elements were found in the samples collected closest to the degassing craters, and in the downwind sector, confirming that the eastern flank of Mt. Etna is the most impacted by volcanic emissions. Leaves collected along two radial transects from the active vents on the eastern flank, highlight that the levels of metals decrease one or two orders of magnitude with increasing distance from the source. This variability is higher for volatile elements (As, Bi, Cd, Cs, Pb, Sb, Tl) than for more refractory elements (Al, Ba, Sc, Si, Sr, Th, U). The two different species of plants do not show significant differences in the bioaccumulation of most of the analyzed elements, except for lanthanides, which are systematically enriched in Rumex leaves. The high concentrations of many toxic elements in the leaves allow us to consider these plants as highly tolerant species to the volcanic emissions, and suitable for biomonitoring researches in the Mt. Etna area.
    Description: Published
    Description: Vienna, Austria
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Mt. Etna ; biomonitoring ; Trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-03
    Description: The Kasatochi 2008 eruption was detected by several infrared satellite sensors including Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR), and Atmospheric Infrared Sounder (AIRS). In this work a comparison between the volcanic cloud SO2 and ash retrievals derived from these instruments has been undertaken. The SO2 retrieval is carried out by using both the 7.3 and 8.7 micron absorption features while ash retrieval exploits the 10–12 micron atmospheric window. A radiative transfer scheme is also used to correct the volcanic ash effect on the 8.7 micron SO2 signature. As test cases, three near‐contemporary images for each sensor, collected during the first days of the eruption, have been analyzed. The results show that the volcanic SO2 and ash are simultaneously present and generally collocated. The MODIS and AVHRR total ash mass loadings are in good agreement and estimated to be about 0.5 Tg, while the AIRS retrievals are slightly lower and equal to about 0.3 Tg. The AIRS and MODIS 7.3 micron SO2 mass loadings are also in good agreement and vary between 0.3 and 1.2 Tg, while the MODIS ash corrected 8.7 micron SO2 masses vary between 0.4 and 2.7 Tg. The mass increase with time confirms the continuous SO2 injection in the atmosphere after the main explosive episodes. Moreover the difference between the 7.3 and 8.7 micron retrievals suggests a vertical stratification of the volcanic cloud. The results also confirm the importance of the ash correction; the corrected 8.7 micron SO2 total masses are less than 30–40% of the uncorrected values.
    Description: Published
    Description: D00L21
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: reserved
    Keywords: Remote sensing ; ash retrieval ; SO2 retrieval ; multispectral satellite instruments ; MODIS ; AVHRR ; AIRS ; hyperspectral satellite instruments ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The occurrence of particle aggregation has a dramatic effect on the transport and sedimentation of volcanic ash. The aggregation process is complex and can occur under different conditions and in multiple regions of the plume and in the ash cloud. In the companion paper, Costa et al. develop an aggregation model based on a fractal relationship to describe the rate particles are incorporated into ash aggregates. The model includes the effects of both magmatic and atmospheric water present in the volcanic cloud and demonstrates that the rate of aggregation depends on the characteristics of the initial particle size distribution. The aggregation model includes two parameters, the fractal exponent Df, which describes the efficiency of the aggregation process, and the aggregate settling velocity correction factor ye, which influences the distance at which distal mass deposition maxima form. Both parameters are adjusted using features of the observed deposits. Here this aggregation model is implemented in the FALL3D volcanic ash transport model and applied to the 18 May 1980 Mount St. Helens and the 17–18 September 1992 Crater Peak eruptions. For both eruptions, the optimized values for Df (2.96–3.00) and ye (0.27–0.33) indicate that the ash aggregates had a bulk density of 700–800 kg m−3. The model provides a higher degree of agreement than previous fully empirical aggregation models and successfully reproduces the depositional characteristics of the deposits investigated over a large range of scales, including the position and thickness of the secondary maxima.
    Description: Published
    Description: B09202
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic ash ; particle aggregation ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We report here on the first hydrogen determinations in the volcanic gas plume of Mount Etna, in Italy, which we obtained during periodic field surveys on the volcano’s summit area with an upgraded MultiGAS. Using a specific (EZT3HYT) electrochemical sensor, we resolved H2 concentrations in the plume of 1–3 ppm above ambient (background) atmosphere and derived H2‐SO2 and H2‐H2O plume molar ratios of 0.002–0.044 (mean 0.013) and 0.0001–0.0042 (mean 0.0018), respectively. Taking the above H2‐SO2 ratios in combination with a time‐averaged SO2 flux of 1600 Gg yr−1, we evaluate that Etna contributes a time‐averaged H2 flux of ∼0.65 Gg yr−1, suggesting that the volcanogenic contribution to the global atmospheric H2 budget (70,000–100,000 Gg yr−1) is marginal. We also use our observed H2‐H2O ratios to propose that Etna’s passive plume composition is (at least partially) representative of a quenched (temperatures between 750°C and 950°C) equilibrium in the gas‐magma system, at redox conditions close to the nickel‐nickel oxide (NNO) mineral buffer. The positive dependence between H2‐SO2, H2‐H2O, and CO2‐SO2 ratios suggests that H2 is likely supplied (at least in part) by deeply rising CO2‐rich gas bubbles, fluxing through a CO2‐depleted shallow conduit magma.
    Description: Published
    Description: B10204
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: restricted
    Keywords: Hydrogen ; Mount Etna ; Open-vent volcano ; plume ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Many volcanoes show a change in chemical composition of the gas phase prior to periods of eruptive activity. Fine‐grained tephra erupted from active vents and transported through volcanic plumes can adsorb, and therefore rapidly scavenge, volatile elements such as sulfur, halogens, and metal species in the form of soluble salts adhering to ash surfaces. Analysis of such water‐soluble surface materials is a suitable supplement for remote monitoring of volcanic gases at inaccessible volcanoes. In this work, ash samples of the 2004 to 2009 eruptive activity of Stromboli volcano were sampled, leached, and analyzed for major and trace elements. Data analysis and interpretation was focused on determining the relationship between chemical composition of water‐soluble components adhering to volcanic ash and the volcano’s activity state. First results show significant temporal variations in ash leachate compositions, reflecting changes in the eruptive style of the volcano. In particular, we reveal that ash leachates S/F and Mg/Na ratios showed marked increases prior to a large‐scale explosion on 15 March 2007.
    Description: Published
    Description: D17204
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Leachate analyses of volcanic ashes ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...