ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Nitrification  (2)
  • General Chemistry
  • Ecological Society of America  (2)
  • 2010-2014  (2)
  • 1990-1994
  • 1980-1984
  • 1970-1974
  • 1925-1929
Sammlung
Erscheinungszeitraum
  • 2010-2014  (2)
  • 1990-1994
  • 1980-1984
  • 1970-1974
  • 1925-1929
Jahr
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Ecological Society of America, 2006. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 16 (2006): 2153–2167, doi:10.1890/1051-0761(2006)016[2153:NONADN]2.0.CO;2.
    Beschreibung: The isotopic signatures of 15N and 18O in N2O emitted from tropical soils vary both spatially and temporally, leading to large uncertainty in the overall tropical source signature and thereby limiting the utility of isotopes in constraining the global N2O budget. Determining the reasons for spatial and temporal variations in isotope signatures requires that we know the isotope enrichment factors for nitrification and denitrification, the two processes that produce N2O in soils. We have devised a method for measuring these enrichment factors using soil incubation experiments and report results from this method for three rain forest soils collected in the Brazilian Amazon: soil with differing sand and clay content from the Tapajos National Forest (TNF) near Santarém, Pará, and Nova Vida Farm, Rondônia. The 15N enrichment factors for nitrification and denitrification differ with soil texture and site: −111‰ ± 12‰ and −31‰ ± 11‰ for a clay-rich Oxisol (TNF), −102‰ ± 5‰ and −45‰ ± 5‰ for a sandier Ultisol (TNF), and −10.4‰ ± 3.5‰ (enrichment factor for denitrification) for another Ultisol (Nova Vida) soil, respectively. We also show that the isotopomer site preference (δ15Nα − δ15Nβ, where α indicates the central nitrogen atom and β the terminal nitrogen atom in N2O) may allow differentiation between processes of production and consumption of N2O and can potentially be used to determine the contributions of nitrification and denitrification. The site preferences for nitrification and denitrification from the TNF-Ultisol incubated soils are: 4.2‰ ± 8.4‰ and 31.6‰ ± 8.1‰, respectively. Thus, nitrifying and denitrifying bacteria populations under the conditions of our study exhibit significantly different 15N site preference fingerprints. Our data set strongly suggests that N2O isotopomers can be used in concert with traditional N2O stable isotope measurements as constraints to differentiate microbial N2O processes in soil and will contribute to interpretations of the isotopic site preference N2O values found in the free troposphere.
    Beschreibung: This work was funded by the National Science Foundation (SET, award #ATM-9905784; SCT, award #EAR- 0312004). We also received support from a National Science Foundation Major Research Instrumentation award (SCT, #ATM-9871077) and an instrumentation award to the University of California–Irvine from the W. M. Keck Foundation.
    Schlagwort(e): Amazon forest soils ; Denitrification ; Isotopic enrichment factors ; Isotopomers ; Nitrification ; Nitrous oxide ; Site preference
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Ecological Society of America, 2005. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Monographs 75 (2005): 139–157, doi:10.1890/04-0988.
    Beschreibung: Isotope pool dilution studies are increasingly reported in the soils and ecology literature as a means of measuring gross rates of nitrogen (N) mineralization, nitrification, and inorganic N assimilation in soils. We assembled data on soil characteristics and gross rates from 100 studies conducted in forest, shrubland, grassland, and agricultural systems to answer the following questions: What factors appear to be the major drivers for production and consumption of inorganic N as measured by isotope dilution studies? Do rates or the relationships between drivers and rates differ among ecosystem types? Across a wide range of ecosystems, gross N mineralization is positively correlated with microbial biomass and soil C and N concentrations, while soil C:N ratio exerts a negative effect on N mineralization only after adjusting for differences in soil C. Nitrification is a log-linear function of N mineralization, increasing rapidly at low mineralization rates but changing only slightly at high mineralization rates. In contrast, NH4+ assimilation by soil microbes increases nearly linearly over the full range of mineralization rates. As a result, nitrification is proportionately more important as a fate for NH4+ at low mineralization rates than at high mineralization rates. Gross nitrification rates show no relationship to soil pH, with some of the fastest nitrification rates occurring below pH 5 in soils with high N mineralization rates. Differences in soil organic matter (SOM) composition and concentration among ecosystem types influence the production and fate of mineralized N. Soil organic matter from grasslands appears to be inherently more productive of ammonium than SOM from wooded sites, and SOM from deciduous forests is more so than SOM in coniferous forests, but differences appear to result primarily from differing C:N ratios of organic matter. Because of the central importance of SOM characteristics and concentrations in regulating rates, soil organic matter depletion in agricultural systems appears to be an important determinant of gross process rates and the proportion of NH4+ that is nitrified. Addition of 15N appears to stimulate NH4+ consumption more than NO3− consumption processes; however, the magnitude of the stimulation may provide useful information regarding the factors limiting microbial N transformations.
    Beschreibung: This research was supported by a grant from The Andrew W. Mellon Foundation to The Ecosystems Center of the Marine Biological Laboratory, Woods Hole, Massachusetts, and by a grant from the National Science Foundation to Utah State University, Logan, Utah.
    Schlagwort(e): Ammonium ; N assimilation ; N immobilization ; N-15 isotope dilution ; N mineralization ; Nitrate ; Nitrification ; Soil carbon ; Soil nitrogen ; Soil organic matter ; Soil pH
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...