ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology  (3)
  • Earthquake source observations  (2)
  • 04. Solid Earth::04.04. Geology::04.04.04. Marine geology  (1)
  • Wiley  (6)
  • Irkutsk : Ross. Akad. Nauk, Sibirskoe Otd., Inst. Zemnoj Kory
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2010-2014  (6)
  • 2005-2009
Collection
Years
  • 2010-2014  (6)
  • 2005-2009
Year
  • 1
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: Published
    Description: 452-462
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In this paper we investigate nature and properties of narrow-band, transient seismic signals observed by a temporary array deployed in the Val Tiberina area (central Apennines, Italy). These signals are characterized by spindle-shaped, harmonic waveforms with no clear S-wave arrivals. The first portion of the seismograms exhibits a main frequency peak centred at 4.5 Hz, while the spectrum of the slowly decaying coda is peaked at about 2 Hz. Events discrimination is performed using a matched-filtering technique, resulting in a set of 2466 detections spanning the 2010 January–March time interval. From a plane-wave-fitting procedure, we estimate the kinematic properties of signals pertaining to a cluster of similar events. The repetition of measurements over a large number of precisely aligned seismograms allows for obtaining a robust statistics of horizontal slownesses and propagation azimuths associated with the early portion of the waveforms. The P-wave arrival exhibits horizontal slownesses around 0.1 s km−1, thus suggesting waves impinging at the array almost vertically. Separately, we use traveltimes measured at a sparse network to derive independent constraints on epicentral location. Ray parameters and azimuths are calibrated using slowness measurements from a local, well-located earthquake. After this correction, the joint solution from traveltime inversion and array analysis indicates a source region spanning the 1–3 km depth interval. Considerations related to the source depth and energy, and the occurrence rate which is not related to the daily and weekly working cycles, play against a surface, artificial source. Instead, the close resemblance of these signals to those commonly observed in volcanic environments suggest a source mechanism related to the resonance of a fluid–filled fracture, likely associated with instabilities in the flux of pressurized CO2.
    Description: Published
    Description: 918-928
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Fracture and flow ; Earthquake source observations ; Interface waves ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: In press
    Description: (11)
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-03
    Description: After an earthquake, rapid, real-time assessment of hazards such as ground shaking and tsunami potential is important for early warning and emergency response. Tsunami potential depends on sea floor displacement, which is related to the length, L, width, W, mean slip, D, and depth, z, of earthquake rupture. Currently, the primary discriminant for tsunami potential is the centroid-moment tensor magnitude, MwCMT, representing the seismic potency LWD, and estimated through an indirect, inversion procedure. The obtained MwCMT and the implied LWD value vary with the depth of faulting, assumed earth model and other factors, and is only available 30 min or more after an earthquake. The use of more direct procedures for hazard assessment, when available, could avoid these problems and aid in effective early warning. Here we present a direct procedure for rapid assessment of earthquake tsunami potential using two, simple measures on P-wave seismograms – the dominant period on the velocity records, Td, and the likelihood that the high-frequency, apparent rupture-duration, T0, exceeds 50-55 sec. T0 can be related to the critical parameters L and z, while Td may be related to W, D or z. For a set of recent, large earthquakes, we show that the period-duration product TdT0 gives more information on tsunami impact and size than MwCMT and other currently used discriminants. All discriminants have difficulty in assessing the tsunami potential for oceanic strike-slip and back-arc or upper-plate, intraplate earthquake types. Our analysis and results suggest that tsunami potential is not directly related to the potency LWD from the “seismic” faulting model, as is assumed with the use of the MwCMT discriminant. Instead, knowledge of rupture length, L, and depth, z, alone can constrain well the tsunami potential of an earthquake, with explicit determination of fault width, W, and slip, D, being of secondary importance. With available real-time seismogram data, rapid calculation of the direct, period- duration discriminant can be completed within 6-10 min after an earthquake occurs and thus can aid in effective and reliable tsunami early warning.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: open
    Keywords: Earthquake dynamics ; Earthquake source observations ; Seismic monitoring ; Body waves ; Early warning ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Stress can undergo rapid temporal changes in volcanic environments, and this is particularly true during eruptions. We use two independent methods, coda wave interferometry (CWI) and shear wave splitting (SWS) analysis to track stress related wave propagation effects during the waning phase of the 2002 NE fissure eruption at Mt Etna. CWI is used to estimate temporal changes in seismic wave velocity, while SWS is employed to monitor changes in elastic anisotropy. We analyse seismic doublets, detecting temporal changes both in wave velocities and anisotropy, consistent with observed eruptive activity. In particular, syn-eruptive wave propagation changes indicate a depressurization of the system, heralding the termination of the eruption, which occurs three days later.
    Description: Published
    Description: 1779-1788
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Interferometry ; Seismic anisotropy ; Volcano seismology ; Volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Stromboli is a 3000 m high island volcano, rising to 900 m above sea-level. It is the most active volcano of the Aeolian Archipelago in the Tyrrhenian Sea (Italy). Major, large volume (1 km3) sector collapses, four occurring in the last 13 kyr, have played an important role in shaping the north-western flank (Sciara del Fuoco) of the volcano, potentially generating a high-risk tsunami hazard for the Aeolian Islands and the Italian coast. However, smaller volume, partial collapses of the Sciara del Fuoco have been shown to be more frequent tsunami-generating events. One such event occurred on 30 December 2002, when a partial collapse of the north-western flank of the island took place. The resulting landslide generated 10 m high tsunami waves that impacted the island. Multibeam bathymetry, side-scan sonar imaging and visual observations reveal that the landslide deposited 25 to 30 × 106 m3 of sediment on the submerged slope offshore from the Sciara del Fuoco. Two contiguous main deposit facies are recognized: (i) a chaotic, coarse-grained (metre-sized to centimetre-sized clasts) deposit; and (ii) a sand deposit containing a lower, cross-bedded sand layer and an upper structureless pebbly sand bed capped by sea floor ripple bedforms. The sand facies develops adjacent to and partially overlying the coarse deposits. Characteristics of the deposits suggest that they were derived from cohesionless, sandy matrix density flows. Flow rheology and dynamics led to the segregation of the density flow into sand-rich and clast-rich regions. A range of density flow transitions, both in space and in time, caused principally by particle concentration and grain-size partitioning within cohesionless parent flows was identified in the deposits of this relatively small-scale submarine landslide event.
    Description: Published
    Description: 1488-1504
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Flow transitions ; island volcano ; subaqueous cohesionless density flows ; submarine landslide deposits ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...